OHIO

UNIVERSITY

JOINT SERVICES ELECTRONICS PROGRAM

Sixteenth Annual Report Appendix

The Ohio State University

ElectroScience Laboratory

Department of Electrical Engineering
Columbus, Ohio 43212

Annual Report Appendix 721563-6
Contract No. N00014-89-J-1007
October 1993

Department of the Navy
Office of Naval Research
- 800 North Quincy Street
Arlington, Virginia 22217

94 1 10 1771

DTIC

ELECT
AN181994

A. Approved for public release; Distribution is unlimited




NOTICES

When Government drawings, specifications. or other data are
used for any purpose other than in connection with a definitely
related Government procurement operation, the United States
Government thereby incurs no responsibility nor any obligation
whatsoever. and the fact that the Government may have formulated,
furnished, or in any way supplied the said drawings, specifications,
or other data, is not to be regarded by implication or otherwise as
in any manner licensing the holder or any other person or corporation,
or conveying any rights or permission to manufacture, use, or sell
any patented invention that may in any way be related thereto.




80272-101
REPORT DOCUMENTATION | 1. REPORT NO. 3. 8. Reciplent's Accession No.
PAGE
4. Title and Subtitle 5. Report Date
Appendix October 1993

Joint Services Electronic Program — Sixteenth Annual Report

7. Author(s)
Leon Peters, Jr.

8. Performing Org. Rept. No.
7215663-6

9. Performing Organization Name and Address
The Ohio State University

ElectroScience Laboratory

1320 Kinnear Road

Columbus, OH 43212

10. Project/Task/Work Unit No.

11. Contract(C) or Grant(G) No.
(C) Noo014-89-3-1007
(G)

12. Sponsoring Organisation Name and Address
Department of the Navy, Office of Naval Research
800 North Quincy Street

Arlington, Virginia 22217

13. Report Type/Period Covered
Annual Report Appendix

14.

18. Supplementary Notes

16. Abstract (Limit: 200 words)

17. Document Analysis a. Descriptors

b. Identifiers/Open-Ended Terms

¢c. COSATI Field/Group

18. Avallabllity Statement
A. Approved for public release;
Distribution is unlimited.

19. Security Class (This Report)

21. No. of Pages
Unclassified

20. Security Class (This Page)

22. Price

Unclassified

(See ANSI-Z30.18)

See Instructions on Reverse

OPTIONAL FORM 272 (¢-77)
Department of Commerce




Contents

b

SECTION PAGE

INTRODUCTION . .. .. .. i it ittt e i eenns

JSEP REFEREED JOURNAL PAPERS PUBLISHED
SEPTEMBER 1992 TO SEPTEMBER 1993 . . . ... ......... ...

JSEP RELATED REFEREED JOURNAL PAPERS
ACCEPTED FOR PUBLICATION
SEPTEMBER 1992 TO SEPTEMBER 1993 . . . . ... ... ........

JSEP RELATED PAPERS
SUBMITTED FOR PUBLICATION
SEPTEMBER 1992 TO SEPTEMBER 1993 . . . . .. ... ... ... ...

JSEP RELATED PAPERS
IN PREPARATION FOR PUBLICATION
SEPTEMBER 1992 TO SEPTEMBER 1993 . . . ... ... ... ... ...

JSEP RELATED CONFERENCES/ORAL PRESENTATIONS
SEPTEMBER 1992 TO SEPTEMBER 1993 . . . . . . ... ... ......

JSEP RELATED AWARDS, PH.D. DISSERTATIONS AND M.SC THESES
SEPTEMBER 1992 TO SEPTEMBER 1993 . . .. .. ... .........

REPRINTS JSEP REFEREED JOURNAL PAPERS PUBLISHED
SEPTEMBER 1992 TO SEPTEMBER 1993 . . ................

Aecession Por

DTIC QTTALITY INSPECTED 8 DTIC 748
¥naunounced

Justifiestion

NTIS QRAXI &
a
O

By

| Distribution/
Aveilability Godes

iii Avail and/er
Dist Special

A
p |




4N TN I N E N G BE B h ) D I DD I By B O e
.

INTRODUCTION
This Appendix contains the reprints published under JSEP in the time September 1992
to September 1993.
In addition to the 10 reprints contained herein, there are 6 papers already accepted
for publication during the next contract period, 11 papers submitted and 16 papers in

preparation.
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An Asymptotic Closed-Form Representation
for the Grounded Double-Layer Surface

Green’s Function
M. A. Marin, Member, IEEE, and Prabhakar H. Pathak, Fellow, IEEE

Abstract—In this paper, an efficient closed-form asymptetic
vepreseatation for the grounded double-layer (swbstrate-super-
strate) Green’s function is presented. The formalation is valid
for both source (s horizontal electric dipole) and observation
points anywhere inside the superstrate or at the interfaces. The
asymptotic expressions are developed via a steepest descest
evaluation of the original Sommerfeld-type integral representa-
tion of the Green’s function, and the large parameter in this
asymptotic development is proportional to the Iateral separation
between source and observation points. The asymptotic solution
is shown to agree with the exact Green’s function for lateral
distances even as small as a few tenths of the free-space wave-
length, thus constituting a very efficient tool for analyzing printed
circuits /antennas. Also, since the spproximstion
gives separate contributions pertaining to the different wave
phenomena, it thus provides physical imsight into the field
behavior, as shown through the examples.

1. INTRODUCTION

_ ’I'HE grounded double-layer (substrate-superstrate)
confi

guration is of increasing interest in printed cir-
cuit/antenna technology. It has been demonstrated in [1]
and (2] that, by properly choosing the layer thicknesses
and material parameters, significant improvements can be
achieved in the performance of the printed antennas,
including the reduction or elimination of surface waves,
which is a subject of primary concern when dealing with
large arrays of printed elements. Also, a double-layer
structure allows for the separation of active circuitry and
radiating patches in hybrid or monolithic integrated cir-
cuit technologies. These potential advantages lead to the
need for accurate, “full-wave” analysis of such structures.
So far, the most commonly used to solve

have been applied to evaluate the elements of the mo-

Manuscript received October 28, 1968; revised September 26, 1991.
‘This work was supported in part by Joint Services Electronics Program
under Contract N00014-88-K-0004 and The Ohio State University Re-
mn:hl-‘mdmon.
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be was with the Ohio State University, Electroscience
,Golmbu.OHﬂnz.
P. H. Pathak is with The Ohio State University, Electroscieace Labo-

, Columbus, OH 43212,

IEEE Log Number 9204904.

g .

ment method (MM) mutual impedance matrices. One of
these is the spectral domain approach [4], {6}, [7] which
has the advantage of using simple formulas for the spec-
tral representation of the Green's function, but requires
numerical integration over the eatire spectral plane. On
the other hand, for the spatial domain method (3], (5], [8)
the range of integration is restricted to the area of each
subdomain or basis function, but the Green’s function is
expressed in terms of Sommerfeld-type integrals, which
must be numerically evaluated at each spatial point. It is
clear that both methods require a fairly large amount of
computer time. Moreover, since both spectral and spatial
integrands contain terms that oscillate faster for increas-
ing separation between subdomains, the numerical inte-
grations become very inefficient when computing the MM
mutual coupling between widely separated basis functions.
Also, if the spatial size of the basis functions is small,
their transforms extend farther in the spectral domain,
thus adding inefficiency to the numerical integration when
the spectral domain approach is employed.

To overcome these limitations, we propose the use of
an asymptotic closed-form representation of the Green’s
function, which makes the mutual coupling computation
in the spatial domain extremely efficient. Such an asymp-
totic representation has aiready been obtained for the
single-layer case [9]-{11], and was found to provide excel-
lent results even for very small distances between source
and observation points (usually down to a few tenths of
the free-space wavelength). As an extension to the above
work, the purpose of this paper is to develop an accurate
asymptotic closed-form representation for the Green’s
function of a grounded double layer planar structure, as
well as to show some of its advantages.

A further extension to include multilayers does not
appear straightforward. The development of the closed
form asymptotic result requires one to evaluate certain
derivatives of the integrand present in the Green’s func-
tion integral; such an evaluation becomes complicated for
multilayers because in this case the integrand itself be-
comes rather complicated. It is for this reason that an
asymptotic treatment of the more general, grounded mul-
tilayer Green’s function has not been attempted here;
only the special double layer case, which is of sufficient
practical interest, is considered in this paper.

This paper is organized as follows. Section II presents
the formulation of the substrate-superstrate Green’s func-

0018-926X/92803.00 © 1992 IEEE
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tion in terms of Sommerfeld-type integrals for a horizon-
tal Hertzian dipole embedded in the superstrate. Section
III discusses the number and location of the relevant
poles of the structure. The asymptotic evaluation of the
original Sommerfeld integrals is carried out in Section IV.
Finally, Section V presents numerical results showing the
accuracy of the new asymptotic representation. It will be
shown how the asymptotic formulas provide not only
computational efficiency, but also physical insight into the
field behavior. An e*/*' time dependence for the fields
and sources is assumed and suppressed in the following
analysis, .
IL. FORMULATION

Consider an infinitesimal £-directed electric dipole at
(x',y’, z')embeddedmthempemzeofaphm
grounded double-layer configuration, as shown in Fig. 1.
We are interested in calculating the £- and j-direction
electric fields at any observation point (x,y,z) in the
superstrate including the interfaces (0 < z,z’' < d,). These
fields can be written as follows:

E, =— k’U-i-—a-z-[U W] )
o 21m¢

-1 a2
E.= 27 we, {ax ay - W]} @
where
U= [ FUCE)Io( o6) dE 6)
0
W= [ FY(£)Ji(p6) dE @
0
J, being the zeroth-order Bessel function
p=V(x-x)+(y~y) (5)

the lateral separation between source and field points.
The wavenu. .ocrs in media 1 and 2 are defined as k, =

k,‘/y., e and k, = k,,‘/y.,, . » Tespectively, where k, is
the wavenumber ‘of the semiinfinite medium above the
superstrate (this semiinfinite region is usually free-space),
and u,;, ¢, are the relative permeability and permittivity
referred to that medium so that g, i, and ¢ = ¢,
The functions FY-¥ m(3)and(4)anbedetenmnedby

solving the boundary-value problem in the spectral do-
main, yielding (for 0 < 2,2’ < d,):

§ [TiB.+Ti8: + T3By
T e B

where the T* terms are given by:
T{ = D;(1 + &) = Dj(1 - a,)e~?/ s Q)
T{ = Dj{1 + a, + (1 — a,)e"2/*:t41727) (8;
TS = {D;; + De2*+*}(1 = a,)e"3*ud, (9)

FU(¢) =

m—

Fig. 1. Grounded doubie-lsyer configuration with sowrce S (2 horizon-
tal electric dipole) and observation point P embedded in the superstrate.
and
k!x k!x
D} = — % j—cot[k,, d 10
(] Py J“‘ [ 1 l] ( )
"oz/ﬂ-o
e ™ 11
kz:/ﬂd ( )
- 2-2). >z
I ST AL
Bz - e-jku(z#x'); ﬂ) - e+jku(x-n') (13)
being
ko, = Vi3 — €% ki, = ki g7;
ky, = ,/kg - £2. (14)

It is noted that to be consistent with the Sommerfeld
radiation condition the choice of the branch in (14) must
be such that

Im {k,,} < 0. (15)

Finally, the denominator in (6) is given by
kz: 0: 12 1 — e~ 2tuty
( ) cot[k,, d,] {———

kzx/"'l
‘— - j— oot [k,, d,]} (1 + e~2ku), (16)

Similarly, F"canbewrittenas

Y (r"a, * T8 - T,
TR TR T;a,} an
with

T = D2(1 + @,) - D5(1 - a,)e2tuts  (18)
T =Doy[~(1 + a,) + (1 = a,)e”2at4-17] (19)
TP = [D}y - Die~ %] (1 ~ @, )e a2 (20)
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and

ky, k,
D} = -‘;‘ i = tan[k,, d\] (21)
*oz/ €
= = "z;/‘z (22)

The denominator D,, in (17) is now

kl: 0: Fo: 1 (l - e-ZIk.,lg)
O {( ) e 2k dl]} ky./ ¢z

+ {T +1k—- tan [k, d, } a+ e"i"u‘z) (23)

The above expressions for the fields have been checked to
reduce to the single-layer case when u,, €, tend to u,, €
and/or d, tends to zero. Also, the denominators (16) and
(23) agree with those given in [2], except for a multiplica-
tive factor.

III. POLE STRUCTURE

The zeros of D,, D,, in (6) and (17) constitute the poles
of the composite (double) layer. Their number and loca-
tion depend on the layer thicknesses and material con-
stants, as well as the wavenumber k,. Restricting our
attention to the lossless case, it is well known that D,, D,
exhibit a certain number of zeros on the real axis of the
&plane, in the interval (k,, max(k,, k,)]. These poles de-
scribe the surface waves guided by the structure, and
therefore appear on the proper Riemmann sheet (con-
sistent with the radiation condition) of the &plane, as
defined in (15). But there are also poles on the improper
Riemmann sheet of the §plane, known as leaky wave
poles. Although there are in general an infinite number of
them [12]}, it was found in [10] and [13] for the single-layer
case that the inclusion of only a particular set of these
poles produced a significant improvement in the asymp-
totic solution, for nearby source and observation points on
the surface of the slab. This set of pule: is located on the
real axis of the improper Riemmann <«t.:e. of the §{plane
for the lossless case, and therefore they will be referred to
as improper surface wave poles. It was also found that
proper and improper surface wave poles are closel; re-
lated. In fact, surface wave poles (except for the first TM
surface wave pole, which is always above cutoff) are
originally improper poles that move towards the branch
cut at k, along the real axis of the improper Riemmann
sheet as the layer thickness increases, and finally “jump”
into the proper plane, then moving away from &, along
the proper real axis. In the same way, improper surface
wave poles are originally improper complex (or leaky
wave) poles that move onto the improper real & . ~her
the appropriate conditions are met. In this section, we will
investigate the number of TE and TM poles on the real
axes of both, the proper and improper sheets ( &plane) for
a general double layer structure, as a function of its
constitutive parameters. Also, a simple procedure to lo-

cate the first TE and TM proper and /or improper surface
wave poles will be outlined.

A Zeros of D,

As mentioned before, a new TE surface wave pole will
always appear initially at § = k, on the proper Riemmann
:beet.sothetoﬂowmgeondmonmnstbemet:

D(§=ky) =0 (24)
which can be written using (16) as
Vnz-l
d\/n -1
¥r2 W ]
"1-1
- dyfn, =1} (25)
n
where n, = ¢,, u,\; By, = €, 11,,. De in a way simi-
lar to [12], the parameters L, = ko d,y/n, = 1,L, = kyd,

Y2 — 1, (25) can be expressed more compactly as
Yol =Y . @
#y2 #ry

It is noted that this equation was already given by Jackson
and Alexopoulos [1, eq. (37)], and it represents the condi-
tion for any TE surface wave mode to tumm on. For
example, for a given ¢,,, u,5, d, such that L, < #/2,(26)
will be satisfied at infinite points, each one for a certain
L, such that Nw < L,z2N + )= with (N = 0,1,2,---).
If we plot the condition (26) in a two-dimensional L,L,
plane for a given set of ¢,;, u,,, we get a plot like in Fig.
2(a). In the regions between two consecutive curves, the
number of surface waves is constant. However, the num-
ber of improper surface wave poles (wp in Fig. 2) is not.
As discussed before, two leaky wave poles move onto the
improper real axis when the point defined by (L,, L,) in
Fig. 2(a) moves close enough to the curve defining the
order of the next region. As L, or L, increases, one of
these poles begins moving towards the branch cut and
finally “jumps” onto the proper Riemmann sheet, thus
constituting a new surface wave pole.

Note in Fig. 2(a) that, if ¢,; = u,, = 1 (no second layer
present), L, = 0 and the L,, L, plane reduces to the L,
axis, yielding the results already reported in [12] for the
single-layer case. It is also noted that the curved segments
between dots in Fig. 2 can be convex or concave, depend-
ing on the particular values of ¢, u,; in (26).

In most practical configurations, there is only one proper
or improper TE surface wave pole, and it can be easily
found as follows. The pole will be located on the real axis
of the proper (improper) sheet if the left-hand side of (26)
is greater (smaller) than the right-hand side. In either
case, a Newton-Raphson searching procedure imple-
mented in (16) with §,, = 0.99k,/n, (foraswp)or §, = k,
(fonlwp)asmualvnluehasbeenfoundmpmv:dethe
actual Jocation of the pole in only a few iterations. Note
that the subscript is on §;, above refers to the vaiue of
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Fig. 2 Number of proper (swp) and improper (wp) surface wave

for given materials (¢,,, u,;), as a function of layer thicknesses: (a) TE
we.lnd(b)TMcase(L, -kodl‘/!,"&,, - ‘,Lz-kodz C,,u," 1).
The number of iwp indicated within the brackets are additional im-
proper surface wave poles that can exist in each region.

the initial guess for the location (in the £ plane) of the
proper surface wave pole, and likewise the subscript i/ on
§,; refers to the initial value of ¢ pertaining to the
improper surface wave pole.

B. Zeros of D,

Similar considerations to those discussed in the previ-
ous case lead now to the following condition, for a TM
pole to arise on the proper Riemmann sheet

2270 an(Ly) = -l an(y) @0
€2 €

We can again plot the condition (27) in an L,, L, plane,
as we did for D,. The result for a given set of ¢, u,; is
shown in Fig. 2(b). The same general considerations dis-
cussed above for D, are applicable here. It is also seen
that, for L, =0 (single layer case), the plane in Fig. 2(a)
reduces to the L, axis, with the result already given in
(2}

In most practical double layer structures, there is only

any) can be located in a similar manner, now starting the
search at both §, =k, and ¢, = 0.99k,y/n,. The &,
€, above represent the values of the initial guesses
the location in the ¢ plane of the first and second

improper surface wave poles, ively. When L, >
#/2, D, presents a singularity st d,/k? — £2 = x/2. In
this case special care must be taken with
the starting value of the searching algorithm in both
Riemmann sheets, because the searching procedure can-
not “cross” a singularity. These situations can be easily
handled by plotting D,, along both (proper and improper)
real §axes to determine appropriate starting values.

IV. ASYMPTOTIC EVALUATION OF THE
SOMMERFELD INTEGRALS

Conventional numerical evaluation of the Sommerfeld-
type integrals (3), (4) presents two main difficulties. First,
the integrands exhibit a certain number of poles that have
to be extracted in order to obtain a relatively smooth
function suitable for numerical integration. Second, the
oscillatory, slowly decaying behavior of the Bessel func-
tion results in a poor convergence of the integrals, partic-
ularly when the lateral separation between source and
observation points is large in terms of the wavelength.

To overcome these limitations, asymptotic closed-form
expressions for U and W in (3) and (4) will be developed
in this section. To carry out the asymptotic evaluation we
first write integrals (3) and (4), due to the oddness of FU-¥
with respect to £, as:

1
U= 3 [ PR pE) a6 (28)

1
We s fc ’F"(e)Hs”(pe)de (29)

where C, is the Sommerfeld path, as shown in Fig. 3. This
path can be deformed to give the sum of the enclosed
residues plus the integral around the branch cut (contour

1
Us - 3 ZijR"( EYHE(p€)
1
+3 jc .r"(:)Hé"(pe)de (30)
1
Ws ~ 5 ;Z‘W'RW( fi)Hg)( Pfi)

1
+3 [ FTOHP () 8. ()

Here, RU¥ are the residues of FU'" at ¢ = ¢ (proper
surface wave poles), and can be calculated as follows:

NY(§)

U = i - EYFY R ——
R(&) e_.hn}l(f E)FO(E) Di(E) (32).
N¥(§&)

D, (&) -D;(¢§)
(33)

RY(¢) = Lllz‘(f = &)FY(§) =

_
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Fig. 3. Original the deformation to give
the sum of the enclosed residues plus the integral arcund the branch cut
(Cp) Here, §= £+ j§"

where NU'¥ represent the numerators of FV and F” in
(6) and (17) and D,, D,, stand for the singular and non-
singular denominators in (17). The minus sign of the
residues in (30) and (31) comes from clockwise integration
around the poles.

The above result, (30), (31), allows for the interpreta-
tion of the solution in terms of two contributions: a
discrete number of surface waves, whose strengths are
given by the corresponding residues at the poles, plus a
continuous spectrum of waves, represented by the integral
around the branch cut. The purpose of the asymptotic
evaluation is to obtain the dominant terms in the latter.

With the above view in mind, the following changes of

variable can be used [9)-[11}):
T= ki - §* (34)
T
Y-— (35)
(1]
siny =1 — js2. (36)

The first one transforms the integral around the branch
cut into a real-axis integral in the 7 plane. The second
performs the angular spectrum mapping, and the third
transforms the steepest descent path (SDP) in the y plane
onto the real axis of the s-plane. The three planes, as well
as the paths of integration and the location of proper and
improper surface wave poles (Jossless case) are shown in
Fig. 4.

Since the above transformations have been discussed in
more detail in [9}-{11], it will thus suffice for our purposes
to consider the direct transformation from the &plane to
the s-plane:

€= ko(1 - js*). &)

lnu-odudngtheaboveu'ansfomﬁoninagenenliﬁte-
gral of the form

. »

1
I = 3 [_FCOHE(pE) d (38)

v=PLANE

)

coea-

®)
s =PLANE

/
-

,‘{ .-.'h

)
Fig. 4. Original and descent (SDP) paths of integration in the

(2) rplane; (b) y-plane; and (c) s-plane. The Jocation of proper (s) and
tmproper (1) surface wave poles is slso shown.

where C, is the contour shown in Fig. 2, one gets
1
Iy = 3 | Flko(1 =) ] HP ko o1 =) (= 24kos) ds

(39)
where I; is the resulting contour of integration in the
s-plane, as shown in Fig. 4(c). Now, if k, p is assumed to
be large, we can use the large-argument form of the
Hankel function in (39), yielding

1 [2k,
o~ =] — @K% /8)y=jkep ~kyps?
I, 2‘/ ;pi eX= /9, 'fr‘G(s)e o’ ds  (40)

where

. 9 -2}.‘
G(s) = F[ky(1 - js )]7;-_-]7

By deforming the original contour Iy into I'gpp, extract-

ingthemgulmnesmdapptmammemdmgregu
lar function by the first two

Taylor series expansion around s = 0 [14], [15], one gets
the following result:
eX=/%) g=jker R(b) .
n~ S S B R Femn
1 [G"(0) R(b:)
2"0P{ —+L ‘ ] (42)
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where R(b,) are the residues of G(s) at s = b, (singulari-
ties in the s-plane), G (0) is the second-order derivative
of (41) evaluated at s =0 and F(x) is the transition
function (as defined in [11].

It can be easily shown that the residues of G(s) at
s = b, are related to those of F(§) at £= ¢ by

R
R(b) = e )
where R(§,) is defined in (32) and (33), and

by = e /NETky — 1 (44)

where the principal branch of the above square root
(Re(b,) > 0) corresponds to surface wave poles, and the
other branch to leaky wave poles.

It can be seen that the solution given in (42) is in a very
amenable format, involving only simple algebraic opera-
tions and the well-known transition function F, which
contains simple Fresnel integrals in the lossless case [11].
Also, the summations in (42) involve only one or two poles
in most practical cases (which typically involve only mod-
erately thin layers). The evaluation of the second deriva-
tive of (41) at s = 0 is also simplified by noting that:

G"(s = 0) = —4jF'(s = 0) (45)

where F is FU-%(£) in (6) or (17) evaluated at § = k(1 -
Jjs?). Although somewhat cumbersome due to the rela-
tively functions involved, the evaluation of F'(s = 0) in
(45) is straightforward, and the results for three different
situations (source and observation points both along the
first or second interface and along different interfaces)
are given in Appendix A.

It must be mentioned at this point that a complex leaky
wave pole existing on the improper sheet of the original
&-plane may contribute to the solution if it is captured in
the path deformation (I'] into I'{pp), or it may still influ-
ence the solution if it appears close enough to the saddle
point. In these cases, the asymptotic solution including
only the real {axis proper and improper surface wave
poles will be seen to lose accuracy in the neighborhood of
the source. However, this can be regarded as a second-
order effect, since the complex leaky wave poles cannot
appear arbitrarily close to the saddle point, while real-axis
poles do. Nevertheless, these situations are rarely found
in practice.

Finally, when the observation point is very close to the
source, the asymptotic solution will fail, and 2 numerical
integration procedure (sce e.g., [11] or alternative inte-
gral representations [16] must be used.

V. NUMERICAL RESULTS AND CONCLUSIONS
In this section we will first examine the accuracy of the
asymptotic approximation in the three cases considered in
the Appendix The examples have been selected to show
the validity of the closed-form expressions for different
combinations of low and high dielectric constants, as well
as thin and thick dielectric slabs (lossless case). Although

magnetic materials will not be used throughout these
mmb.nmunbemmmnthueummnd
difference in the treatment of the magnetic material and
the dielectric material from a purely numerical point of
view, and the asymptotic solution is equally valid for both.

In the examples shown below, one TM surface wave
pole (plus two improper surface wave poles when neces-
sary) and one TE proper or improper surface wave pole
have been included in the asymptotic solution. Thus, Fig.
5 shows a comparison between the numerical evaluation
of the exact W (4) and its asymptotic approximation [(31)
and (42)], versus lateral separation between source and
observation points. The “exact” value of the function U
and W is always calculated by a numerical (Gaussian)
integration of (3) and (4), once the limiting behavior and
singularities of the integrand have been extracted [11] In
this case, the source and observation points are located on
the interface between the two diclectric layers. As can be
seen, the asymptotic closed-form expression remains valid
for lateral distances as small as two tenths of the free-space
wavelength A,. Also, Table I shows a CPU time compari-
son between the calculation based on the numerical inte-
gration procedure and the asymptotic closed-form expres-
sions. It is apparent that the use of the closed-form resuit
in conjunction with any spatial-domain formulation will
result in & substantial savings of computer time. It must
also be mentioned that, in all the cases studied here, the
accuracy of the asymptotic approximation for U is at least
as good as it is for W.

Another example is shown in Fig. 6 in which a thin, low
dielectric constant slab is placed on top of a moderately
thick, high dielectric constant layer. In this case, the
source and observation points are along different inter-
faces. Again, the asymptotic solution remains valid for
lateral distances of the order of 0.4A,, although probably
0.2A, could be used for most practical purposes. In this
case, there is no singularity when p — 0, because the
source and observation points are at least separated by
the thickness of the second (superstrate) layer.

One more representative case is shown in Fig. 7, where
a thick layer is now placed on top of a thin one, both with
high dielectric constants. Source and observation points
are here along the dielectric-air interface. As can be
seen, the asymptotic solution can be used in this case
almost down to one tenth of the free-space wavelength.

In general it can be said that the asymptotic closed-form
expressions for U and W can be used down to a few tenths
of the free-space wavelength, for source and observation
points along the same or different interfaces. This also
applies if source and /or observation points are embedded
somewhere inside the layers. However, as it was men-
tioned before, in those particular situations in which a
complex leaky wave pole contributes significantly to the
asymptotic solution, the above expressions for U and W
converge at large lateral distances from the source, of the
order of one free-space wavelength. However, this restric-
tion in the asymptotic solution can be eliminated even in
the latter case if the effect of such complex leaky wave
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Fig. 5. Comparison between the exact W and its asymptotic approxima-
tion, for source and observation points both along the first interface.
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Fig. 6. Comparison between exact and asymptotic W in another exam-
pie. In this case, source and observation points are along different

TABLE 1
CPU Tive (MILLISECONDS IN A VAX 8550) 70 CALCULATE BoTH
U AND W AT SEVERAL DISTANCES FROM THE SOURCE IN THE
- ExAMPLE OF FIG. §

Lateral CPU time CPU time
(p/Ag) integration closed-form
0s & 4
10 145 4
20 176 4

poles is incorporated into the solution in a manner similar
to that done for the improper surface wave poles.

On the other hand, computational efficiency is not the
only advantage of an asymptotic solution. It also provides
physical insight into the field behavior, giving separate
contributions that vividly highlight the different wave phe-
nomena. Thus, the interference between the space wave
and the pole wave transition effects is contained in (42),
whereas the effect of proper surface wave poles is explic-
itly represented by the residue terms in (30) and (31). As
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Fig 7. Exact and asymptotic W for a case in which both source and

an example, it is known that a TM surface wave can be
eliminated by using a superstrate (cover) under certain
conditions (1] It turns out that for nonmagnetic super-
strates, the surface wave elimination is only possible when
the substrate is very thin, whereas the use of a magnetic
second layer allows for much thicker substrates. These .
facts can be easily shown by plotting the residue (33) at
the first TM surface wave pole. This residue actually
represents the “strength” with which the TM surface wave
is excited, and therefore will vanish when the appropriate
conditions are met. Fig. 8 shows an example in which the
absolute value of the TM residue (case 1 of the Appendix)
is plotted versus superstrate thickness, for both a mag-
netic and a non-magnetic superstrate. As can be seen, the
surface wave residue for the magnetic superstrate! ex-
hibits a zero at d, = 0.02A,, while in the nonmagnetic
case there is no such phenomena. It is noted that both
residues reduce to the single-layer case when d, — 0. It
must also be mentioned that, for the nonmagnetic super-
strate, the next (TE) surface wave arises at d, = 0.033A,,
while for the magnetic case this occurs at d, = 0.07A,.
Also, by using the asymptotic closed-form expressions,
we can easily plot the fields produced by an elementary
source. Let us imagine an £-directed elementary electric
dipole in a double-layer structure. If the observation point
moves around the source in a circumference of radius R
(in the plane of the source), using (1) and (2) we can
calculate the E,, and E,, “planar” radiation patterns, as
function of the angle ¢ with the £-axis. Fig. 9
shows the results for a structure that supports only one
TM surface wave, which produces a lobe of E,, in the
endfire direction (note that in free space such a lobe will
i broadside direction). However, when an-
other (now TE) surface wave is present, a second lobe
appears around ¢ = 90°, as shown in Fig. 10. In these
examples the derivatives in (1) and (2) were evaluated
numerically, but for R large enough to where only the

impedance between two prioted dipoles in this
particular case are presented in [7), Fig. 8.
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Fig. 9. Normalized surface fields E,,, E,, produced by an elementary
electric dipole at a distance R, versus ¢('R-5A.).lnthisas,onlya
‘T™ surface wave exists.

surface waves [first terms in (30) and (31)] need to be
considered. It can be done analytically, yielding sin ¢ or
cos? ¢ type patterns corresponding to the TE or TM
surface wave poles, respectively.

Finally, since the calculation of the field produced by an

elementary source is extremely efficient in terms of com-

puter time, it allows for parametric studies, like the one
shown in Fig. 11. In this example, the E,, field produced
by an elementary source at R = 5A,, ¢ = O is plotted as a
function of both the relative permeability and thickness of
the superstrate. The line shown in the figure represents
the locus of the combinations ( u,,, d,) that eliminate the
first TM surface wave. As can be seen, the “cut” of the
above figure defined by u,, = 10 is the one already shown
in Fig 8.
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Fig. 11. Magnitude of the E,, field produced by an elementary electric
dipole at R = SA, ¢ = 0 as a function of both superstrate permeaoility
and thickness. The solid line shows the locus of the combinations x, , d,
that eliminate the first TM surface wave (¢, = 1).

In conclusion, an asymptotic closed-form approximation
for the Green’s function of a horizontal electric dipole in
a grounded double-layer configuration has been derived.
This representation is valid for source and observation
points anywhere in the superstrate (including interfaces),
although it can be easily extended to cases in which
source and/or observation points are in the substrate.
The large parameter in the asymptotic approximation is
the lateral separation between source and observation
points, and the asymptotic solution has been checked to
agree with the exact Green’s function for lateral separa-
tions down to a few tenths of the free-space wavelength.
Also, the usefulness of the asymptotic expressions has
been demonstrated with illustrative examples. It is noted
that the present asymptotic procedure can, in principle, be
generalized to n layers; however, the » layer case would
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require one to perform certain differentiations in the s
plane (as in the Appendix for n = 2 case), which can
become far more cumbersome than for the n = 2 case, if
done analytically. At present, we are looking at efficient
numerical procedures to overcome this difficult problem
in the generalization to n layers. It is believed that these
asymptotic closed-form expressions can greatly improve
the efficiency of the preseat methods of analyzing printed
circuits /antennas, as well as contribute to a better under-
standing of the related phenomena.

APPENDIX.
DERIVATIVES IN THE S-PLANE _

The calculation of derivatives in the s-plane can be
done in the general case as follows. We first write FU-¥ in
(6) and (17) using (37) as

NY(s)

Fle= ke -isN)] = 55

Ny N.'”
e sia-o) - 2 0

where D(§) D,(§) are gwen in (16) and (23); and
NY,N¥_ are simply found by comparing (A.1) and (A.2)
with (6) and (17). Now the problem has been reduced to
compute derivatives of the form:

9 N(s) _ N'(s)-D(s) = N(s)D'(s)

s D(s) D(s)

(A1)

(A2)

F'(s) =

(A3)

Since we are only interested in the derivatives at s = 0
(ie., £ = k), the above formula simplified to:

F'(s = 0)
_N(s=0)-D(£=ko) - N(§ = ko) -D'(s "0)
D*( € = ko)

(A.4)
Using the formulas in Section II, NY, N,",,,, and D, ,,

€ = k, are easily found. The only remaining quantities to
evaluate in (A.4) are the first derivatives of NY, N¥,,, and
D, ,, at s = 0. These are given by:

D)(s = 0) = (~ko/2e"/)
J n -1 2
#y | tan(kodyyfn, = 1) -1
(1 = emikedaVi Ty 4 | 4 o= 2kedafraT

(AS)
D,(s=0)

= (—koV2 eﬂ'/‘))[ n, — 1 tan (kod,\/n; — ")}
-m(l e—zlk,d,\/l:_-) +1 +¢‘3I*o‘zﬁ2_—]
2=

(A.6)
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Note that D,, D, do not depend on the position of source
and/or observation point, so their values at § = k, and
their derivatives at s = 0 do not need to be changed in
the cases described below.

Case 1. Source and Observation Points Both Along the
First Interface ' = o, z = 0):

1 - e‘zih‘ﬂd“

NV (s=0)= —ky2 el(vm_T__l.__ (A.7a)

NY (s=0) = =kgVZe** /9 /m =1 (1 — e~ dketaVRa-T)
(A 7v)

N €
NY'(s=0) = —jkgV2Ze /9 [ =1 —(3 tan (kod,/n; = 1)
1

.[1 + ,-2ik.lz\/;‘T]

Case 2 Source and Observation Points Along Different
Interfaces (z' = 0,z = d,):

NU(s=0)=0
N¥(s5=0) =0

(A.7c)

(A 8a)
(A.8b)

' . €
NY'(s=0) = -jko\/z_e"""-;:- n, — 1tan

(kodyyfmy = T ReitebaVPe=T (A 80)

Case 3. Source and Observation Points Both Along the
Second Interface (z' = d,, z = d,):

NY(s=0) =0
NY(s=0)=0

NY'(s=0) = —kg/2ef=/9 {JIT—_I(I - e-ij.d“/n;_-—!.)

=T 2 tan (ko = 1)
1

-1 + e~dikerfraT )}

(A92)
(A.9b)

+jym,
(ASc)
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High Throughput Slotted ALOHA Packet
Radio Networks with Adaptive Arrays

James Ward, Member, IEEE, and R. Ted Compton, Jr.

Abstract— We cousider the use of a multiple beam adaptive
array (MBAA) in a packet radio system. In a multipie beam
adaptive array, a given set of antenna elements is used to form
several antenna patterns simultaneously. When used in a packet
radio system, an MBAA can successfully received two or more
overlapping packets at the same time. Each beam captures a
different packet by automatically pointing its pattern toward
one packet while nulling other contending packets. This paper
describes how an MBAA can be integrated into a single-hop
slotted ALOHA packet radio system and analyzes the resulting
throughput for both finite and infinite user populations.

1. INTRODUCTION

N an ALOHA packet radio system, radio terminals transmit

packets to each other in a common channel. In the original
ALOHA system, packet collisions limit channel throughput to
18% for unslotted ALOHA and 36% for slotted ALOHA [1].
This low throughput has motivated much research on collision
resolution algorithms and better protocols to obtain higher
throughputs while still permitting random access {2}, [3].

Underlying most work on improved protocols is the as-
sumption that a packet terminal can receive only one packet
successfully at a time. It is assumed that when two or more
packets collide, none is received correctly. In some systems
a capture effect [4]—[8] may allow one packet to be received
correctly during a collision. However, even with capture, it
is still usually assumed that a terminal can receive only one
packet at a time.

The main exception to this assumption occurs in spread
spectrum systems. Spread spectrum packet systems allow
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reception of more than one packet in the same slot [10],
[11]). However, spread spectrum systems require much wider
bandwidths than conventional ALOHA systems for the same
information rate.

Recently, Ghez et al. [12), {13) proposed a gencral “Mul-
tipacket ALOHA” model in which multiple packets may be
successful in each slot. Their work mainly addresses the
stability and optimal control of a general multiple capture
system, with the emphasis on spread-spectrum slotted ALOHA
systems.

In this paper we present a new method for achieving
multiple captures in a slot: the use of an adaptive array [14] as
the receiving antenna at a packet radio terminal. We propose
a system where the signals from a set of array elements
are combined with more than one set of weights to form
several simultaneous receiving patterns. We call such an array
a multiple-beam adaptive array (MBAA). Each beam has its
maximum response in the direction of one of the arriving
packets and has nulls on the other packets. Such an MBAA
allows a terminal to receive several packets successfully in
each slot. Moreover, it provides this cepability without any
need for additional bandwidth as in a spread spectrum system.

In a previous paper [15], the authors showed how a single-
beam adaptive array could be used in a slotted ALOHA system
to receive one packet correctly in the presence of interfering
packets. The.performance improvement obtained with a single
beam adaptive array is similar to that obtained with Carrier
Sense Multiple access (CSMA) [16]. However, the adaptive
array technique has the advantage over CSMA that it does not
require all terminals in the network be able to hear each other.

With an MBAA, however, a much more substantial im-
provement can be obtained than with a single-beam adaptive
array. In this paper, we describe how an MBAA can be used
in a slotted packet system, and we evaluate the performance
of a single-hop ALOHA network with an MBAA. We obtain
results for a finite population system by using a Markov chain
model for the system backlog similar to that in [12). We aiso
obtain results for an infinite population system by applying a
theorem due to Ghez et al [13]. Our results show that a very
significant improvement in both throughput and delay can be
achieved with only modest MBAA capabilities.

0090-6778/93803.00 © 1993 IEEE
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The MBAA technique described here should not be con-
fused with the use of multiple beam antennas in satellite
communications. Satellite multiple beam antennas consist of
a number of fixed beams, which divide the coverage area
into spatially disjoint geographical regions. Several authors
[17])-[20] have considered systems where users in a particular
region (beam) access the satellite according to an ALOHA
protocol. In this case, each beam represents an independent
ALOHA process. The use of multiple uplink beams reduces
the overall contention by allowing users from different regions
simultaneous access to the satellite. However, collisions still
result for users within the same region. Satellite systems with
scanned beams have also been proposed [21]. In these systems,
users in a given region can access the satellite only during the
time when their region is covered by the satellite beam.

For the MBAA concept presented here, however, any beam
can receive a packet from any user. Each beam responds
adaptively to all the packets transmitied in each slot. Each
packet is captured by a separate beam that nulls other con-
tending packets. This technique allows multiple packets to
be received successfully in the same slot without requiring
any scheduling or reservation-based protocols. Such a system
appears to be equally applicable to terrestrial or satellite packet
radio systems.

The organization of the paper is as follows. Section II
provides a short discussion of multiple-beam adaptive arrays
and describes certain of their characteristics that are important
for packet radio applications. Section III describes how an
MBAA can be used in a packet radio system. In Section IV the
throughput and delay performance of a slotted ALOHA system
with an MBAA is calculated. Section V presents numerical
results, and Section VI contains our conclusions.

II. MULTIPLE-BEAM ADAFPTIVE ARRAYS

An adaptive array is an antenna that controls its own pattern,
by means of feedback, while it operates [14), [22). Fig. 1
shows an adaptive array with N, elements. The complex signal
z;(t) from element j is multiplied by a complex weight w;
and then summed to produce the array output signal s(t). The
weights are controlled by a feedback system that maximizes
the signal-to-interference-plus-noise ratio (SINR) at the array
output. Maximizing the output SINR typically causes the array
to steer a beam toward the desired signal and to null other
incident signals.

In an adaptive array, the optimal array weights, which
maximize the output SINR, are given by [14]

wW=2e"!s, (1)
where W is the weight vector,
W = [wy, vy, un,])", @
& is the covariance matrix,
& = E[X"XT], ®
and 8 is the steering vector,
S = E[X"#(t)]. O

Y xy(t)
Y (1)

. —’%— Arroy
—& Oufput
. v s(t)

Xy (1)
Wiy i

WEIGHT

- + Reference

] reeosack “_—"‘(Emr y— S
Signal
(1)

Fig. 1 An adaptive antenna amay. -

In these equations, X is the signal vector,
X = [m(t), z2(t), - 2w, (BT )

and 7(t) is a locally generated reference signal, usually derived
from the array output [14]. (T denotes transpose and * complex
conjugate.)

Several algoritims can be used to control the weights in
an adaptive array to make them approach the optimal weights
in (1) {14]. The Sample Matrix Inverse (SMI) algorithm of
Reed et al. [23], for example, is a popular technique. In the
SMI algorithm, the array signals are sampled, the covariance
matrix and steering vector are estimated from these samples,
and the weights are obtained by solving a linear system of
equations. The sample covariance matrix is calculated from

a 1 N, . T
b= 3 X (WXT(),

(6)
? k=1
and the sample steering vector from
. 1 &
= 3 & X (k)F(k), )

® k=1

where X(k) and (k) denote the kth samples of the signal
vector X and the reference signal 7(¢), and N, is the number
of samples. The array weights are then obtained by solving

dW=35 ®

for W. Reed et al. [23] have shown that approximately N, =
2N, samples are needed to achieve an average SINR within
3 dB of the optimal SINR. For the system described below,
we assume the SMI algorithm is used.

The simple adaptive array shown in Fig. 1 has a single
output signal. However, an adaptive array need not be limited
to one output signal. One can obtain multiple output signals
from the same set of elements by applying multiple sets of
weights to the same element signals. Each set of weights yields
a different array output, representing a different array pattern,
or beam. It is possible to choose the weights so each pattern
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has its maximum on a different incoming packet and also has
nulls on all the other packets. We shall call such an adaptive
armay with multiple sets of weights a multiple-beam adaptive
array (MBAA). By using an MBAA as the receiving antenna
at a packet radio terminal, it is possible for that terminal 10
receive more than one packet successfully at a time.

An MBAA with K beams is essentially K simple adaptive
arrays operating in parallel with the same antenna elements.
Each beam requires a steering vector chosen for a different
incoming packet. (The next section explains how the required
steering vectors may be obtained.)

Two factors limit the performance of an adaptive array: the
number of degrees of freedom it has and its angular resolution.
An adaptive array with N, elements has only N, — 1 degrees
of freedom in its pattern [14]. Each null or beam maximum
formed by the array requires one degree of freedom. For
this application, each MBAA beam must use one degree of
freedom to form a pattern maximum on one of the packets.
Thus, each beam can null up to N = N, — 2 interfering pack-
ets. If there are more than N interfering packets, the output
SINR from the array will usually be too low for successful
reception.

The resolution capability of an array depends primarily on
the array aperture size but also to a lesser extent on the
element patterns and the number of elements. Array resolution
is important in a packet system because if the arrival angles
of an interfering packet and the desired packet are too close,
the array cannot simultaneously null the interference and form
a pattern maximum on the desired packet. In this case, the
output SINR from the array will again be too low for the re-
ception of the desired packet. We shall characterize the resolu-
tion capability of an adaptive antenna by its resolution width
6.. We define 4, to be the minimum angular separation
between a desired and interfering packet at which the array
can maintain an output SINR as large as the output SNR for
a packet received by an omnidirectional antenna. In general,
0, is much less than the beamwidth between first nulls of
the array, because of the array gain. Since each beam in an
MBAA uses the same antenna elements, the resolution width
and the number of available adaptive array nulls are the same
for each beam.

With this background, we now describe the use of an MBAA
in a packet radio network.

III. A PACKET RADIO-MBAA SYSTEM

Consider a packet radio system in which multiple terminals
send packets to a base station, as shown in Figs. 2 and 3.
Assume the network uses a slotted ALOHA protocol. Each
packet received at the base station is demodulated and checked
for errors using an error detection code on the packet. If no
ervors are detected, the packet is successful. If errors are found,
the packet is unsuccessful and is simply discarded. For each
successful packet, an acknowledgment is sent from the base
station back to the network. Acknowledgments are done on a
different frequency than incoming packets, so the base station
and the terminals can transmit and receive at the same time.
Unacknowledged packets are retransmitted after a delay.
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Fig. 2. A single-hop packet radio setwork with a central base station.
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Fig. 3. Block diagram of the acquisition circuitry for a single-beam adaptive
amay.

To improve the throughput into the base station, an MBAA
is used as the receiving antenna at the base station. The patterns
of the MBAA beams will be adapted to the incoming packets
in each slot.

The main problem in using an MBAA in a packet radio
network is the acquisition problem, i.c., the problem of locking
cach beam onto a different packet while nulling all other
packets in the slot. We use the following technique for
acquisition.

First, we add a special precamble to the beginning of each
packet. This preamble consists of three periods of a known
pseudonoise (PN) sequence {25]. Second, we make the width
of the slot slightly larger than the packet width by an wncer-
tainty interval. Packet transmission times form each user are
then randomized over this interval in each slot, so each packet
arrives at a slightly different time.

Packets are then acquired as follows. Suppose first that only
one beam is to be formed. The goal is to point the beam
toward the first packet to arrive in each slot with nulls on any
other packets in that slot. For packet acquisition, a single array
element with an omnidirectional pattern will be used as the
receiving antenna, so any packet can access the system. The
omnidirectional element output is passed through a matched
filter, as shown in Fig. 4. This filter is matched to one period
of the preamble PN code. At the filter output, a timing spike
occurs after each period of the preamble code for each packet.
The filter output is compared to a threshold, and the first
threshold crossing in the slot triggers calculation of the array
weights for that packet. The weights are calculated over one
period of the PN code. The element signals z;(t) in Fig. 1
are sampled in bascband I and Q samples during the entire
slot. & in (6) and S in (7) are computed over one period of
the preamble code by using the received samples and a stored
replica of the preamble PN code. The threshold crossing is
used to determine the correct timing of the N, samples used
in (6) and (7). The weights are then obtained by solving (8).
These weights are used for the rest of the slot.
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If a second packet arrives in the same slot, the first packet
will still be received successfully as long as the second packet
arrives at least one bit later than the first. There are three
reasons why this is so.

First, the threshold detection logic will be designed so that
the weight calculation process begins only once per slot.! Even
though later packets in the same slot cause additional timing
spikes at the matched filter output, the threshold detector will
not respond to these later spikes.

Second, the length of the uncertainty interval will be chosen
just less than one period of the preamble PN sequence.
Consequently, all interfering packets in a given slot will be
present during the second period of the first packet preamble,
when the weights are calculated. Thus the interfering packets
will be included in the calculation of ®. The presence of
interfering packets in @ causes the array to null the interfering
packets.

Finally, when the second packet is at least one bit later than
the first, it will be essentially uncorrelated with the stored
ode replica r(t). (The cross-correlation of two PN codes is
small as long as they are displaced at least one bit from one
another.) Hence the second packet will have little effect on
the computed value of S.

However, if a second packet arrives less than one bit after
the first packet, the calculated value of § will be in error
because of the correlation between the two packets. In this
case it is assumed the array will lose both packets.

Now consider packet acquisition for an MBAA that can
receive multiple packets per slot. To acquire multiple packets,
the signal processing in Fig. 4 will be used. Each adaptive
array beam will have a separate threshold detector and weight
calculation module. The first packet in a slot will trigger
threshold detector 1 (TD1). When TD1 is triggered, it will
enable TD2, whose function is to acquire the next packet, if
another one arrives. (TD2 will not operate until after TD1
has been triggered.) Similarly, TD3, whose job is to acquire
a third packet, will be enabled once TD2 is triggered, and so
on. When the threshold detector for each beam is triggered, a

!In this discussion we are still considering the case of a single-beam amay.

sepanate weight calculation will be done to obtain the weights
for that beam, in the same manner as described above.

In the next section, we analyze the performance of a packet
radio system using this technique.

IV. PERFORMANCE ANALSIS FOR A K-BEAM MBAA

In this section we model the operation of a single-hop slotted
ALOHA system using an MBAA at the base station. For a
finite population system, we extend the Markov chain model
of Namislo [5] to include the effect of the MBAA. For an
infinite population system, we make use of a theorem due to
Ghez ez al. [13]. In both cases the effect of the MBAA appears
only through the success probabilities F,(i|j, K), where
P,(i| 7, K) is the probability that i packets are successful in
a slot, given that j packets were transmitted in the siot and
given that the base station MBAA has K beams. We begin by
obtaining these success probabilities.

A. MBAA Success Probabilities

To understand how the adaptive array affects performance,
it is necessary to distinguish between acquired packets and
Successful packets. An acquired packet is one that trips the
threshold detector and causes weight calculations to begin for
that packet. Acquisition depends on the relative arrival times
of the incoming packets, the length of the PN code in the
acquisition preamble, and the threshold level. However, packet
acquisition does not by itself guarantee successful reception.
For success, the . Japtive array must also be able to null other
packets that arrive in the same slot. After a packet is acquired,
success still depends on: 1) the arrival angles of any interfering
packets in that slot (because of array resolution), 2) the number
of available beams (because a packet can be acquired only
when a beam is available), and 3) the total number of packets
in the slot (because of the finite number of nulls available in
the array). Only successful packets contribute to the system
throughput.

We assume that each beam of the K-beam MBAA can
form N nulls and has a resolution width of .. In a given
slot, we characterize each packet by an arrival time and an
arrival angle. We assume that packet arrival times are random
variables uniformly distributed on the interval {0, 7, within
cach slot, where T, is length of the uncertainty interval in
each slot. We set T, = (r — 1)T;, where r is the period of the
preamble PN code in bits and T is the bit duration. We assume
packet arrival angles are random variables independent of the
arrival times and uniformly distributed in azimuth [0, 2x] about
the MBAA.

For the acquisition scheme described in Section 111, a packet
arriving at time ¢, is acquired if one of the beams begins
weight calculation for that packet and no interfering packets
arrive within +T;, of time ¢,. We define P,(l] 7, K) to be the
probability that { packets are acquired given that j packets
are transmitted in the slot and there are K beams. We also
define P, ,(i[l, ], K) to be the probability that i packets are
successful given that ! packets are acquired, j packets are
transmitted, and there are K beams. Because each beam has
N nulls, we assume that no acquired packets are successful

.
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if 5 > N+ 1. For j < N + 1, an acquired packet will be
successful as long as no interfering packet arrives from an
angle within 6, of the acquired packet arrival angle.

Let P(l,i]j,K) be the joint probability that I packets are
acquired and ¢ of them are successful, given that § packets are
transmitted in the slot. Then

P(lvtlJaK)=P¢(’IJ'K)P0|¢(‘“1J'K) )

P(l,i]| 3, K) is nonzero only for i < I, because s packet must
first be acquired before it can be successful, and for | < K,
since we can acquire at most one packet for each beam.

- Finally, the success probabilities P, (i| j, K) are gwen by

min(j,K)

Y PLiliK)

(£
min(y,K)
> P15 K)PuGlLiK), (10

R (ils K) =

since there cannot be more acquired or successful packets than
the number of packets transmitted. Under the above assump-
tions, the success probabilities for a single-beam adaptive array
were found in [26] to be

Pl(lljvl)':
o j=0
j=1 1
(1 ﬁ) &)1 2<i<N+1 an
I>N+1
and
P,(0]7,1) =1-P,(1]j,1). (12)

For a two becam MBAA, the derivation of the success
probabilities is straightforward but tedious. Obtaining general
expressions for both FP,(l|j,2) and P,,(i|l,5,2) involves
an induction process with iterated integrals. Because of space
limitations, we shall simply state the results here. The complete
derivations of these results may be found in [24]. First, the
two-beam acquisition probabilities are given by

Pa(ongz) =1- Pa(l IJ’ 2) - Pﬂ(zlj,z)’

=012, (13)
Po(1]5,2) =
0, i=0,2
L . i=
(1-2)'-(1- &) +§Q(i|j,2), i>?2
(14)

0
P.(215,2) = ("717)2" =2 (s
( 2
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where

Qilj.2) = (1 - ——f—l)’

SOE) -5

i=3,--,5-1, 16)

and

QU152 = (1- L)

.0( )(7) (-5)"

ji23 a7

The P,ia(3]1,7,2) are found [24) to be

6.\
Pola(l 11,7,2) = (l - —;_) y 321 @18)

Pnlo(l [2,5,2) =

0, . L. -, =2
{a-gyrma-mm, 35 ®

- [

0, j<2
(i-%), i=2

P,|¢(2 I 2,7, 2) = §=2 2 . .
2221 (,k )Fr(kd)s 3>2

(20)

where the F.(k,j) are given by

. 2 26, P2k ik
Fk)= oo [ (@n - 26, - ¢y 2ot do

(BT e

fork=1,---,j — 2. The two-beam success probabilities can
now be found from (10).

In the numerical results below, the success probabilities for
the one and two-beam cases were obtained from the above
expressions. For K > 2, however, deriving general expres-
sions for P, (1], K) and P,;o(]!, j, K) becomes intractable.
Instead, we obtained the success probabilities for X > 2
from Monte Carlo simulations. For example, Fig. 5 shows
the results of a Monte-Carlo simulation to find the success
nrobabilities P,(i|j,2) for the case N = 8, 4, = §5°.
The figure shows the estimated success probabilities obtained
from the Monte Carlo simulation and the actual success
probabilities computed from (15)-(21). Note the excellent
agreement between the two.
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Fig. 5. Comparison of P,(i | j, 2) obtained analytically with those estimated
from a Moate-Carlo simulation. The MBAA parameters are r = 63, 6, = 5°,
N = 8. The simulation consists of 25 000 trails. (Solid line: theory; dashed
line: simulation results.)

B. Finite Population

We assume a finite population of M terminals that send
packets to the MBAA. At the beginning of each time slot,
each terminal is cither unblocked or blocked, depending on
whether its last transmitted packet was successful or not. We
assume that at the end of each slot, all terminals receive
immediate feedback as to the fate of their packets. We also
make the single packet buffer assumption, where blocked
terminals are prevented from generating new packets until their
backlogged packet is successfully retransmitted. Unblocked
terminals transmit a new packet with a probability p, in each
slot. A blocked terminal retransmits its backlogged packet with
probability p, in each slot until successful, at which time it
becomes unblocked again. We assume that p, is constant and
that p, > p, so backlogged packets are quickly cleared.

Given the above assumptions, a sufficient state description
for the system at slot k is the number of blocked terminals
X, at the beginning of slot k. Since the number of blocked
terminals at the beginning of slot k 4+ 1 depends only on the
number blocked at slot k and the number of successful packets
during slot k, the process X, is a Markov chain. The state
space of this Markov chain is Ex = {0,---, M}, where M
is the number of terminals in the network.

Let n; = n,, + n, be the number of packets transmitted
in a given slot, where n, is the nusnher of new packets
and n, the number of backlogged paciet: transmitted. Given
that the system is in state i € Ex, th.: number of blocked
terminals retransmitting backlogged packets is a Bemoulli
random variable with distribution

Q. (11i) = Pr{n, =1} Xy = i} = (j)p&(l —p) . @

Similarly, n,, has distribution

Qn(t1) =Pr{nn = 1] Xa =3}
= (M : ')pﬁ.(l - @)

Thus the total rumber of packets is distributed according to

. [}
Qi) =Pr{n =1 Xa =i} =) Qals|i)Q-(I - 5]3).
=0
(24)

To find the transition probabilities of the Markov chain,
we consider the operation of the MBAA and enumerate the
ways that each possible transition can occur. For an MBAA
with K beams, at most K packets can be successful in a
slot, 50 the state can decrease by at most K terminals in a
slot. Given that the system is in state i at the beginning of
a slot, the possible system transitions during the slot are to
states j = i — min(s, K),~-,i,---, M. Listed below are the
ways that cach possible transition may occur.

* j < ¢ = K : Not possible, since at most X packets can

be successful in a given slot.

s j=1-t, t=0,1,---,min(i, K):

1) n, =0, n, 2 t, and ¢t packets are successful.
2) n,=1,n, 2t and t + 1 packets are successful.
3) n, =2, n, 2 ¢, and ¢ + 2 packets are successful.

4) n, = K ~t, n, > t, and K packets are successful.

s j=i+t, t=0,1,-- - M~i:

1) », = ¢, n, 2 0, and no packets are successful; all
new arrivals become backlogged.

2) np=¢t+1, n. 20, and 1 packet is successful.

3) np,=t+2, n, 20, and 2 packets are successful.

4) n, =t+ K, n, 20, and K packets are successful.

From the information above and the success probabilities,
the transition probabilities P; ; = Pr{Xi41 = j| Xi = i} can
be written as

F;=0

i=K+1,--- M, j<i-K, (25

K-t i

Pice= Y Qu(mli)Y Q. (U|)Pu(m + t{l+m,K);
m=0 =t

i=1,.-- .M, t=1,---,min(i, K), (26)

K+t i

Piive= 3 Qu(m|i) 3 Q-(1i)Pu(m ~t)1+m, K);
m=t =0
i=0,---,M, t=0,1,--- M~-i. (#2))

We denote the transition probability matrix as P = [P, ;).
This Markov chain is irreducible, aperiodic, and ergodic,
since the number of states is finite. Consequently, there exists

R BN Bh E AN BN BN A = e
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a limiting probability distribution x = [x(0), x(1),-- -, x(M))]
given by the solution to the linear system of equations [27]

w=xP (28)

subject to the constraint

M
Y ox)=1. (29)

i=0

Once the x(i) are found, we can determine the average (long
run) throughput, delay, and backlog of the sysiem..

In any slot, the throughput can be from 0 to K packets.
We define the conditional throughput S(i) to be the average
number of successful packets in a slot given that ¢ terminals
are blocked at the beginning of the slot.

K
S(t) = 2 m Pr{m packets are successful | X; = 1}

m=1

K M
=Y mY Ql)P(m|LK). (30)

m=1 |=m
The average throughput is then
M
5=3 s(iyG). (31)
=0
The average backlog B is the average number of ‘blocked
terminals,
M
B=Y in(i). (32)
s=0
The new packet input rate in state § is

Sin(i) = (M = i)pn . 33)

In the steady state, the average input rate equals the average
throughput, so

s'iu = in(B) =8. (34)

We use Little’s theorem [28] to express the average delay D
experienced by a new packet as

B _B
D=§;=§.. (35)

Due to the single packet buffer assumption, the delay results
obtained here are a lower bound on the delay in any system
with queues at the terminals. The quantities 5, B, and D
will be used to compare the performance of the system with
different MBAA capabilities.
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C. Infinite Population

Ghez et al. [12), [13] have recently studied the stability and
control of a general multiple capture slotted ALOHA system
with an infinite population of users. An infinite population
slotted ALOHA system is said to be stable if the backlog
Markov chain is ergodic; it is unstable otherwise [29], [30].
Without dynamic control of p,., the infinite population system
with an MBAA is always unstable unless the number of aulls
is infinite. However, slotted ALOHA with an MBAA can be
stabilized in the same manner as other ALOHA systems {2].
Ghez et al [13] have proven a useful theorem that gives the
maximum achievable throughput under optimal coatrol of p,
for a general multiple capture system. We state the theorem
below and apply it to our MBAA system. The resulting curves
(described in Section V) provide insight as to the effects of the
MBAA parameters. The reader is referred to [13] for the proof
and for details on the control scheme.

Theorem 1 ([13]): If new packet arrivals are Poisson dis-
tributed, the maximum throughput S, achievable in a multiple
capture channel with optimal control is

S, = supt(z), (36)
=20
where
te) =Y ZoCa, @
n=l
and
Cn= z kP,(k|n). (38)

k=1

Cy is the average number of successes given that n packets
are transmitted.

To apply the above theorem to the casc of a K-beam
MBAA, we replace the P,(k|n) in (38) with our K-beam
success probabilities P,(k|n,K) from (10). Recall that
P,(k|n,K)=0forn > N + 1, so that

N4l _q

Hr)=e*Y %—c... (39)

n=l

Since t(z) is nonnegative and continuous with ¢(0) = ¢(o0) =
0, '

sup t(z) = maxt(z). (40)
220 £20
Thus S, is given as the maximum of (39).

V. NUMERICAL RESULTS

In this Section we present typical performance results for
s network equipped with an MBAA. First we examine a
finite popuiation of M = 50 terminals using the results of
Section IV-B.

Fig. 6 shows the conditional throughput S(s) as a function
of the number of blocked users for several cases when p, =
0.2 and p, = 0.02 s0 that, on average, more than one packet
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Fig. 6. S(i) and S;a(1) for an M = 50 terminal system as the pumber of
MBAA beams is increased. pn = 0.02,p, = 0.2, N = 8,0, = 5°, r'=63.

per slot is arriving at the base station. S(i) and S;, (i) (the
load line) are plotted for MBAA's with K = 1 to 6 beams.
These curves are for N = 8 nulls and 8, = 5°, corresponding
to a 10-clement antenna array. The period of the preamble
PN code is r = 63. Fig. 6 also shows the S(i) that results
for slotted ALOHA without an adaptive array. It may be seen
that the conditional tt- oughput increases significantly as the
adaptive array is added and the number of beams is increased.
Conditional throughput levels of nearly 4 packets per slot are
possible with a 6-beam MBAA.

Fig. 6 also provides insight into the stability and average
performance of the system. Although the Markov chain de-
scribing the finite population slotted ALOHA system is always
ergodic, we can discuss the stability in the sense of [1], [31).
The finite population ALOHA model is said to be stable if
there is a single intersection point of the S(i) and Si,(i)
curves. Ideally, this intersection point should occur in a region
of high throughput and low delay. If there is one intersection
point in a region of very low throughput and high delay, the
system is said to be saturated, and if more than one intersection
point exists, the system operates in a bistable mode, in which
case the average performance is typically poor. When there
is only one intersection point, the average performance is
approximated by the performance level at the intersection
point. We see that without an adaptive array, performance is
very poor, with essentially zero throughput and all terminals
blocked. This is to be expected, since the total traffic is more
than one packet per slot. All the MBAA cases are ‘stable.
In general, increasing any of the MBAA capabilities has a
stabilizing effect on the system. As K is increased the average
throughput increases from 0.83 packets/slot with K = 1 to
0.994 packets/slot for K > 3 beams.

For larger K, the input traffic (p, and M) or the retrans-
mission probability (p,) can also be increased substantially
while still maintaining “stability.” In Fig. 6, near optimal
throughput of Mp, = 1.0 packets per slot is achieved with
only 2 beams, and the performance for 3 or more beams is
essentially the same as for the 2-beam case. For K > 2, we
could improve the delay performance slightly by increasing p,,
but the average throughput will not increase noticeably since

the 2-beam throughput is already very close 10 the maximum.
However, for K > 2, Mp, is much less than the maximum
value of the conditional throughput, so there is room for the
average throughput to be significantly increased by increasing
the input traffic.

Fig. 7 shows the average performance as a function of p,.
The retransmission probability is 0.2 for all cases. Fig. 7(a)
shows the average throughput. For low traffic, the rise in
average throughput is approximately linear with p,. In this
region there is essentially no backlog and the maximum
average throughput of § = Mp, is very nearly attained. The
length of this linear region increases with the number of beams
until the total traffic on average exceeds the adaptive array
capabilities. As p, increases, more collisions are destructive
(no captures) due to either poor acquisition (a8 collision in
time), insufficient array resolution (a collision in angle), or
not enough nulls per beam. Thus, the average throughput
peaks and begins to decrease. Increasing p, further drives
the system toward saturation where nearly all terminals are
blocked.

Fig. 7(b) shows D versus S for the same cases. These
curves exhibit the typical bistable ALOHA behavior. Any
throughput less than the maximum can be achieved at a2
desirable low delay point or at an undesirable high delay point.
Fig. 7(c) shows the average delay versus p,. When the input
traffic is high, the delay improvement provided by additional
beams can be quite large. The increased capacity provided
by the multiple beams reduces the delay experienced when
the system is highly backlogged. Fig. 7(d) shows the average
backlog.

We now show results for an infinite population form
Section IV-C. For a particular choice of MBAA parameters,
we compute t(z) from (39) and find its maximum numerically.
This maximum value is S,. Fig. 8 shows S, as the number
of beams and nulls per beam are increased. Note that when
N = 0, we get the standard slotted ALOHA (no MBAA)
maximum throughput? of e~!. Several important points are
evident. For a given number of beams there is 3 minimum
number of nulls above which no further improvement in
throughput is obtained. As the number of beams increases,
one needs more nulls/beam in order to attain the maximum S,
(for that K)). Also, the improvement gained by adding beams
becomes larger as the number of nulls increases, until the
maximum S, is attained. However, this increase in throughput
becomes smaller with each additional beam.

Fig. 9 shows how S, depends on the resolution width 6,
for a 3-beam adaptive array. As expected, the maximum
S, increases as the resolution of the array improves (as
0, decreases). More nulls/beam are required to achieve the
maximum S, for an array with good resolution than for one
with poor resolution.

Fig. 10 shows how S, decreases for a 3-beam array as the
period r of the preamble code, and thus the length of the
uncertainty interval T, decreases. The reduction in S, is due
to the reduced probability of acquiring packets. In general,
S, drops less as r is reduced from the ideal case of r = 0o

2 Actually, one should aot choose N < K = 1 because then some beams
will never successfully receive a packet.
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Fig. 8. Maximum S, with optimal coatrol as a function of the

sumber of nulis/beam N and the sumber of beams K. r = 63, §, = 5°.

than when 6, is increased from the ideal case of 8, = 0°.
Furthermore, the drop in S, with either 8, or r becomes more
severe as the number of beams is increased. In other words,
very good acquisition and resolution performance is necessary
to obtain the full benefit of a large multiple beam capability.
In the ideal case of 6, = 0, r = oo, the maximum throughput

R~ R TR
Vb of Adegtive Ay Nulle/Boam

Fig. 9. Maximum throughput S, with optimal costrol as a function of the
sumber of sulls/beam N snd the resolution width 8. r = 63, A’ = 3 beams.
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. approaches K as N is increased for a K-beam MBAA.

It should also be noted that the maximum throughput in an
infinite population model is always Jess than that of any finite
population model. However, we have observed that the infinite
population results closely match those for finite population
systems of M > 20 terminals.
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V1. CONCLUSIONS

In this paper we have proposed the use of a multiple-
beam adaptive array to improve the performance of a slotted
ALOHA packet radio network. Each beam captures 3 different
packet by automatically pointing its maximum at one packet
in each slot and adaptively nulling other packets in that
slot. We presented a procedure for packet acquisition and
analyzed the performance of a packet system with an MBAA.
It was shown that throughput levels between 2 and 4 packets
per slot are possible with only modest MBAA capabilities.
Even higher throughputs are possible with increased MBAA
capabilitics. Because this MBAA technigue can be used with
narrowband packets, it is an attractive alternative to spread-
spectrum multiple access techniques.
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A Reciprocity Formulation for the EM Scattering
by an Obstacle Within a Large Open Cavity

Prabhakar H. Pathak, Fellow, IEEE, and Robert J. Burkholder, Member, IEEE

Abstract— A formulation based oo a generalized reciprocity
theorem is developed for analyzing the external high frequency
EM scattering by a complex obstacle inside a relatively arbitrary
open-ended waveguide cavity when it is flluminated by an ex-
ternal source. This formulation is also extended to include EM
fields whose time dependence may be non A significant
advantage of this formulation is that it aliows one to break up the
analysis into two independent parts; one deals with the waveguide
cavity shape alone and the other with the obstacie alone. Thus,
it is useful for independently estimating the scattering effects
due to modifications in the waveguide cavity shape for a given
type of large complex obstacle, and due to different types of
complex obstacies for a given type of large open waveguide cavity
shape, respectively, without requiring one to treat the entire
configuration each time one of these is changed. The external
scattered field produced by the obstacle (in the presence of the
waveguide cavity structure) is given in terms of a generalized
reciprocity integral over a surface St corresponding to the
interior waveguide cavity cross-section located conveniently but
sufficiently close to the obstacle. Furthermore, the nelds coupled
into the cavity from the source in the exterior region generally
need to propagate only one-way via the open frunt end (which is
directly illuminated) to the interior surface St in this approach,
and not back, in order to find the external field scattered by the
obstacle.

I. INTRODUCTION

FORMULATION based on a generalized reciprocity

theorem is developed for analyzing the high frequency
electromagnetic (EM) scattering by relatively arbitrary open-
ended waveguide cavities containing a large complex interior
obstacle or termination. An extension of this formulation
to include EM fields with non-periodic or arbitrary time
dependence is also presented. These results are of significant
interest in scattered field and EM coupling predictions. An
important advantage of the formulation developed here is
that it allows one to independently estimate the effects on
the overall cavity-obstacle scattering due to modifications in
the waveguide cavity shape for a given interior obstacle,
and due to different obstacles for a given open waveguide
cavity shape, respectively, without having to analyze the entire
cavity-obstacle configuration each time one of them (i.e., the
cavity shape or the obstacle) is changed. The latter aspect will
be discussed in more detail in a separate paper.
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A typical geometry of the general problem under consid-
eration is depicted in Fig. 1. The geometry is illuminated by
an external current source (at P’), and the observer is also
assumed to be in the external region (at P). It is primarily
of interest in this study to be able to analyze the external
scattering from a geometry of the type in Fig. 1 for cases
where the open front end of the cavity is directly illuminated
by the source, and for observation points which are also in
direct view of the open front end, as shown in the figure.
Furthermore, the medium surrounding the cavity structure is
taken 10 be free space and the external surface as well as
the interior cavity walis are assumed to be impenetrable (e.g.
perfectly conducting walls with or without material coating).
St is an arbitrary surface which either encloses the interior
obstacle or partitions the obstacle/termination region from the
rest of the open-ended waveguide region (as in Fig. 1), and
Sk is the surface defined by the open back end of the cavity
beyond the obstacle. It is noted that as a special case, the back
end of the cavity (at Sg) could be closed, or the obstacle
itself could form a termination which completely closes the
back end of the cavity. Furthermore, the waveguide region
beyond the obstacie could also, as a special case, be made
semi-infinite. These latter special cases of the more general
situation depicted in Fig. 1 are discussed in Section II.

The formulation for the field scattered into the exterior
region by just the interior obstacle is based on a generalized
reciprocity integral which requires a knowledge of the fields
on the surfaces S and Sg due to the illumination from the
original current source (a1 P’) with the obstacle present, and it
also requires a knowledge of the fields on St and Sp due toa
conveniently chosen impressed test current source placed at the

0018-548093303.00 © 1993
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observer location (at P) but in the absence of the obstacle and
with the original source turned off. This reciprocity integral
which exists over St and Sg is shown in the next section to
furnish the field scanered into the exterior by the obstacle
in the presence of the waveguide cavity structure. Such a
formulation has the additional advantage that, in most cases
of practical interest, the fields coupled into the cavity from the
sources in the exterior region need to propagate only one-way
(in the forward direction) via the open front end to the interior
surface St, and not back (in the reverse direction), in order
to find the external field scattered by the obstacle. More will
be said about this property later.

The development of the generalized reciprocity integral is
given in Section II, and Section III discusses some methods for
finding the relevant field quantities which appear within this
integral. Section IV presents some numerical results based on
this development, and compares them with the corresponding
solutions obtained without the use of the generalized reci-
procity integral for the sake of establishing an independent
check. An e7“* time convention for the fields and sources is
assumed and suppressed for the periodic or time harmonic
case. Also, the cavity-obstacle configuration is assumed to be
embedded in free space.

II. GENERALIZED RECIPROCITY INTEGRAL FOR TIME
HARMONIC INTERIOR OBSTACLE SCATTERED FIELDS
Consider the open-ended waveguide cavity configuration
illustrated in Fig. 1 which is illuminated by an external im-
pressed electric current source J (P’) and a magnetic current
source M'(P’) at P’. Let (E.,H,) denote the (electric,
magnetic) fields which are produced by these sinusoidally
time varying impressed sources J'(P’) and M'(P’) when the
cavity structure is prcsent but with the interior obstacle absent.
The T'(P’) and M (P’) radiating in the presence of the cavity
structure and the obstacle produce the fields (E, H) where

E=F.+E )
H=H +H, @
and (E.,H:) therefore denote the fields scattered by just the
interior obstacle but in the presence of the cavity walls. Note

that the above fields satisfy the following Maxwell’s Curl
equations:

{v xE= -jw,.,H-M‘(P')} 3
VxH= T(P’)+jw¢o
{VxE‘--Juer H‘(P')} @
VxH.=T(P)+jweE,
and hence,
VxE =-j ,H:
R4 ) S

It is of primary interest to find (E., H.) at any extemal
point P when P is on the same side of the cavity as the original
source at P'. The fields (E., ) can be found in terms of a
set of equivalent sources on Sy and Sg (of Fig. 1) along with

-~

4 S

- -

Fig. 22 Related test problem configuration.

a set of test fields, (E¢, H.), which are produced by an electric
current test source J.(P) at P that has the same frequency as
(', 71°) when it radiates with the cavity structure present
but with the interior obstacle absent, as illustrated in Fig.
2. The fields (E,, H,) satisfy the following Maxwell's Curl
equations:

Vv x Et = -jwu,ﬁ,
VvV x ﬁg = 7g(P) +jU€°E¢

The fields (E., H.) can be related to the fields (E;. ;) via
the divergence theorem applied to the quantity E, x H,—E, x
H_ within the volume V, which is bounded by the surfaces
[ST+SE+S + Sy + ] as shown in Figs. 1 and 2. Thus,

/V-(EZXH.-ExF:)dv ‘

)

e f (E:xﬁg—rgxm)‘ﬁds
E4S5.4+5,4+5T7+Sk
)]

where 7 is the unit normal vector which points into the
region V.. Using (5) and (6), the L.H.S. of (7) reduces, via the
radiation and boundary conditions together with some vector
algebra, to

/7,(?)-E:¢v".-. / E xH -E xH)-ids.
Ve

Sr+Sg
®)

It is noted that the fields satisfy the radiation condition on
T as T — 00, hence the integral on ¥ vanishes in (7). For
perfectly conducting walls, both 7 x E, as well as & x E,
vanish on S, + S,, so that the integrals on those boundaries
also vanish in (7); on the other hand if these walls are coated
with absorbing layers, then S, + S, is taken to be on the
conducting walls, whereas, if the walls are impenetrable then
S. and Sy can be made to lie just within the impenetrable
wall of some thickness (however small), so that the integrals
on S, and S, can be made to vanish again in (7). This leaves
one with integrals only over St and Sg on the R.H.S. of
(7), thereby leading directly to the expression on the R.H.S.

R —
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of (8). The result in (8) constitutes a ized reciprocity
relationship because (E.,H.) and (E., H.) are evaluated
in different environments, i.e., (E;,H.) are found with the
interior obstacle present while (E,, H;) are found with the
interior obstacle absent. In contrast, the standard reciprocity
theorem [1] relates a pair of fields (due to a pair of sources)
in the same environment.

Let the test current J,(P) be a point source of strength Py;
thus,

J.(P) = Ps(7 - F) )

where T is the poéilion vector of the observation point at P
and 7 is the variable of integration (in V,) on the L H.S. of
(8). Now, from (8) and (9) one obtains,

P. - E.(F) = / (E. xH,-E, xH.) - ds. (10)
Sr+Se

When the source and observer are in direct view of the
open front end, as in the case shown in Fig. 1, then the
contribution to E.(7) a1 P from the integration over Sg in
(10) is, in general, sufficiently small in comparison tv that
from the integration over St for a relatively large obstacle,
as is assumed to be the case here. Therefore, (10) can be
approximated in this case by:

?,-E:(r)z/s (E:xH - xH)-ads. (1)

It is noted that (11) is obtained exactly if the cavity is closed
at the end Sg. or if the obstacle is assumed to totally block
Sg from St. One can also arrive at (11) exactly if the surface
Sg is allowed to recede to infinity so that the open-ended
cavity configuration in Fig. 1 becomes semi-infinite (as Sg
recedes 10 oc). In the latter case, one must impose a physical
requirement that there are only outgoing waves crossing Sg
and no waves incoming (or reflected back) into the cavity
from Sg as Sg — oc. This in turn implies that the waveguide
cavity region near and at Sz must be assumed to be uniform
(i.e., with a constant cross section) if Sg — oc; one can
then define an orthogonal set of waveguide modes at Sg
and express (E.. H.) as well as (E,, H,) in terms of these
modes within the uniform waveguide region. It follows from
modal orthogonality that the integral over Sg (as Sg — o0©)
vanishes in (10) for the latter case thereby leading to the
desired result in (11). On the other hand, if the waveguide
cavity is made lossy (or even slightly lossy) as Sg — oo,
then the integral over Sg in (10) vanishes once more thereby
leading again to (11). Furthermore, if it is assumed that the
interior reflection of the waves back into the cavity from the
electrically large open front end is small, then (E.,H.) at
S may be approximated simply by the fields denoted by
(E.. ﬁf) within the cavity which are scattered by the obstacle,
but which exclude the effects of all multiple wave interactions
between the obstacle and the open front end. Likewise, one
may approximate (E, H,) at St in (11) by the fields denoted
as (E;,H;’) which arrive directly at Sy from J,(P) via the
open front end, but which exclude any contributions arriving
from J,(P) via the open end at Sg in Fig. 2 and which also
exclude any effects of multiple wave interactions between the
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open front end and the back end Sg; therefore, (E. H’)
are found by tracking the fields one way from J¢(P) at
P 10 St via the open front end. Finally, under the above
approximations which are assumed to hold true, (11) leads to
the following desired result for the field E.(P) scatiered at P
by the interior obstacle when the cavity-obstacle configuration
of Fig. 1 is illuminated externally by T (P’); namely.

E:(P)-P,z/s (B xHI -9 x ) -2dS. (12)

It is noted that the E.(P) on the LH.S. of (12) can be found
via the RH.S. of (12) in terms of (Eo, H.) and (E.° . H'),
both of which need 1o be evaluated only over the interior
surface St near the obstacle. An altemnative form of (12) can
be expressed as:

E;(P)-P.zfs(r;x'}r,"-r;"xrf;).f.ds (13)

where the integration is over a closed surface S, which
encapsulates the obstacle.

1. ON THE EvaLuation oF (E,,H;’) anp
(E..H.) AT S1 FOR THE TIME- HARMONIC CASE

For relatively arbitrary cavities and for high frequencies,
(2, H?) in (12) can be evaluated, for example, by the
shooting and bouncing ray (SBR) technique [2}-]5), the Gauss-
ian beam (GB) shooting method [4], [5] or the generalized
ray expansion (GRE) technique [5), {6). As mentioned in the
introduction, the use of (12) requires that the fields from the
exterior sources at P and P’ need to propagate only one-way
via the open front end to St and not back. Furthermore, the
GB/GRE methods require shooting a set of beams/rays only
once from the open front end since the launching directions
of these beams/rays and hence the propagation paths within
the cavity are independent of the source location (i.e., whether
the excitation be at the original source at P’ or be at the
observation point P for generating (E;’,H:')); only the initial
beam/ray - amplitudes depend on the excitation. The fields
(E:,H.) can be found by first obtaining (E*.H'’) a1 Sr.
which are the fields incident from the original source J;(P’)
at P' in the absence of the interior cavity obstacle; (£, H™*)
are found in exactly the same manner as (E.’, H,’) and are
thus based on the same assumptions and approximations as
those required to find (E;’,H,’). It may be possible that
the interior reflection from some types of obstacles can be
analyzed using ray methods, in which case the ray fields
(E, H'®) enter the cavity after being excited by the original
source J;(P') and continue beyond Sy into the obstacle-
cavity region to subsequently reflect back from the obstacle
to St as (E,.H.). In the event that an analytical approach
based on ray methods either cannot be used or does not
easily lend itself to find (E,,H.), it may be possible to
employ a numerical approach to accomplish this task. Such
8 numerical approach may be based on a partial differential
equation solution of the wave problem using the finite element
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or finite difference methods, or the integral equation solution
based on the method of moments, or a hybrid combination of
both methods to provide (E., H) once (£, H™) is given.
In these numerical methods, it would be worth employing the
“Green's function™ for the cavity without the obstacle in the
region beyond St which would otherwise contain the obstacle,
so that only the fields (or currents) induced in/on the obstacle
would need be found, because the presence of the cavity
walls is automatically accounted for by this Green’s function.
Furthermore, the Green's function for the cavity without
the obstacle can be represented locally by an eigenfunction
expansion for waveguide cavities with, for example, a circular
cross section in the region where the obstacle would otherwise
be present, or be approximated via ray methods in the case
of arbitrary cavities for which modes cannot be defined in
the usual manner. If neither the analytical nor the numerical
methods can be employed effectively to find (E,,H.). as
may be the case for highly complex and electrically large
obstacles, then altemative (e.g. experimental) methods must
be employed.

It is noted that the (E,.H.) can also be found, in principle,
via a different approach which employs any of the aforemen-
tioned techniques such as the ray methods, numerical methods
or other alternative (e.g. experimental) techniques to develop a
local Green'’s function for the obstacle-cavity region contained
between St and Sg with the obstacle present. This local
obstaclecavity Green'’s function would provide the response
at St. due to a point source also located in the same plane St
and with the obstacle present. Such a Green's function can
be constructed approximately, but with sufficient accuracy,
to emphasize only the local cavity-obstacle region between
St and Sg; it would then also furnish the obstacle response
(E.,H.) at St due 1o an excitation (E*/, ) at St due to
the original source J; at P'. The evaluation of (E*’ F’) and
(E;g, Fg) on St are totally dependent on the long waveguide
cavity shape from the open front end (directly illuminated by
J:(P') and J.(P). respectively) to the fictitious plane Sz;
whereas, the local cavity-obstacle Green's function alluded
to above (and which plays a role in fumishing (E.,H,))
depends primarily on the short cavity section between St
and Sg containihg the obstacle. Thus, one can separate the
effects of the short obstacle region of the cavity from the
rest of the cavity, and indeed very effectively ascertain how
a given obstacle affects a variety of long waveguide cavity
shapes connected to the short part of the cavity containing
the obstacle, and vice versa. Yet another different, but related,
approach which separates the analysis of the shape dependent
cavity region from the obstacle region is described in (7}-{9].

IV. GENERALIZED RECIPROCITY INTEGRAL FOR
INTERIOR OBSTACLE SCATTERED FIELDS FOR
ARBITRARY TIME DEPENDENT EXCITATION

The general result obtained in (8) of Section II for sinu-
soidally time varying (or time harmonic) fields can be extended
directly to fields whose time dependence is arbitrary, as will be
shown below. Indeed, 2 procedure for extending the frequency

domain (or time harmonic) form of a reciprocity theorem as
originally developed by Lorentz into a form valid for fields
with non-periodic time dependence has been presented by
Goubau [10]). The present procedure for the development of
the time dependent form of (8) follows essentially from [10].
Since (8) represents a result which is valid for all frequencies
(w), it can be converted as usual into the time domain via the
inverse Fourier ransform defined by

' fit)= L / F(w)e*' dw (142)

27 Jon
where f(t) is an arbitrary time dependent function synthesized
from the frequency domain spectrum function F(w). The
F(w) can be found from the direct Fourier transform of f(t)

Flw) = /_  f(T)emT aT. (14b)

The relationship in (14a) and (14b), between the transform
pair f(t) and F(w), is commonly denoted by:

f(t) & F(w). (14c)

Next, employing the spectral inversion of (14a) to (8) yields

o0
%/dv” / dw e EL (7 w) - To(F. 7" w)
Ve -oc

= 2% [/ ds ]oduej“"'ﬁ- [E:(?:w) x Hy(F;w)

ST+S5g -

+ HFw) x B 4, 09)

Sr+Sx
The orders of integration have been interchanged in (15). Fol-
lowing the notation in (14c), one may introduce the necessary

time domain field quantities via the relations:

g(F:t) ~ E;(Fw): (16a)
Fo(7;t) = Ho(Fw); (16b)
#(F;t) = Ee(Tw): (172)
Re(7;t) = Hy(F; u) (17b)
777 t) = Jo(F, 7sw). (18)

At this juncture, it is useful to represent the (E, H) spectral
(frequency domam) values in (15) by the arbitrary time domain
functions (g2,%,) which they synthesize;

/ dv” / dw 3 / dr e~ g (Tr) - To(F, 71 w)

e / ireir

Sr+Sg ~o®

[mEn < B

+ h(F7) x Eo(F: w)] (19a)

#on
Sr+Sx

—
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Performing the integration on w in (19a) yields
- -]
/ dv/ drE(F;7) 3. (F,F;t = 1)
Ve -00

= ﬂ ds / dr#i- [E:(F;'r) x he(F;t - 1)
Sr+Sg -
+ Re(Fi7) x &W(Fit - 'r)] rey (%)

If one assumes an impulsive behavior for 7, in both space and
time, then:

WFEFt)=PsF-7)6(t). (20

It follows from (20) that j,(F,7";t — 7) = Pob(F~F) 6(t—7);
incorporating this information into (19b) yields
o0
E(F;t) - Py = ds / dr i
Sr+85 -0

[ x Rt - )

+ Bi(F7) x B(Fit - ‘r)] Q1)

ron
Sr+Sg
The above result in (21), which is in the time domain, is the
counterpart of (8) for the frequency domain. The LH.S. of
(21) can be found via a time convolution of the fields of the
original arbitrarily time varying source located at P’, in the
presence of the cavity and obstacle, with the fields of a time
impulsive point test source at P, in the presence of the cavity
but in the absence of the obstacle. It is noted that the time
convolutions are performed at each point in Sy + Sg; these
are then superposed as evident from the integral over Sy + Sz
on the RH.S. of (21).

If one makes the approximations leading from (8) to (12),
then one can likewise obtain a time-dependent form of (12)
using the same procedure as above; thus:

1) - P, zs T[/ds_ é ar#- [esmn) x B (st - 7)

+REmnxemE-n] @)

Fon St
where

aFt)~EFw);  hFt) — H,(Fw) (22b)
WEN -EFw);  R(Ft) o B (Fw) Q2

Since the result in (12) is obtained from (8) after using high
frequency approximations, it is thus reasonable to expect that
the time domain result for €2(F,t) in (22a) (obtained from
(12)) will provide a useful approximation to the time domain
result for &2(F,t) in (21) (obtained from (8)) only during the
early to intermediate times of arrival of the signal &:(F,t)
which is observed at the point P. The quantities on the right
side of (22a) may be found by transforming the corresponding
frequency domain fields (see (22b) and (22¢)) into the time
domain; alternatively, they could be found directly in the time
domain. The latter aspect will be discussed in more detail in
& separate paper.
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Fig. 3. Echo width versus aspect angle for 2 2-D S-shaped open-ended cavity
with a planar termination found using the reciprocity integral (Rl) with the
GRE and SBR methods.

V. NUMERICAL RESULTS

Figs. 3 and 4 show the EM echo width vs. aspect angle
patterns of a perfectly conducting 2-D S-shaped open-ended
waveguide cavity with a planar interior termination. The 2-D
echo width o is defined by

=12
o= lim 2 IF 0] 1240 @3)
p—oo |‘E'|2

where 7 is the vector to the far field observer (at P), E.(p) is
the field at 7 scattered by the interior termination of the cavity,
as given by (12), and |E’| is the magnitude of the plane wave
field incident on the open front end (P’ is located at infinity to
create an incident plane wave). In Figs. 3 and 4, the echo width
is given in decibels relative to a wavelength (DBW) (i.c., as
10 log o with o in free space wavelengths), and the incident
electric field is polarized perpendicular to the plane of the
geometry. It is noted that only the first order scattering from

‘the interior of the cavity is shown in these figures. No external

scattering or multiple wave interaction effects are included.
The solid line in the plots of Figs. 3 and 4 is calculated using
the hybrid asymptotic-modal method [4], [5) and is used as a
reference solution. The dashed lines are solutions based on the
SBR [2]{5] and GRE [5], {6] methods; in Fig. 3, the one-way
tracking procedure of the generalized reciprocity integral of
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Fig. 4. Echo width versus aspect angle for a 2-D S-shaped open-ended cavity
with a planar termination found using aperture integration (Al) with the GRE
and SBR methods.

(12) is used, and in Fig. 4, the two-way tracking procedure of
the aperture integration method is used. The numerical results
in Fig. 3 which are based on the one way ray tracking that
makes use of the reciprocity integral can be obtained almost
twice as fast as the ones in Fig. 4 that require a two-way
tracking. To compute the generalized reciprocity results of
Fig. 3, the ray fields at the termination plane are converted into
parallel plate waveguide modes and the orthogonality property
of the modes is used to easily evaluate (12). Generally, the type
of results in Fig. 3 can be obtained in less than a couple of
minutes on, for example, a VAX 8550 computer.

This method can also be employed with the same degree of
success for 3-D problems which are currently under study; the
solutions to these will be reponed later along with results for

fields with non-periodic or arbitrary time dependence.
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EM Plane Wave Diffraction by a Planar Junction of
Two Thin Material Half-Planes — Oblique Incidence

H. C. Ly, Student Member, IEEE, R. G. Rojas, Senior Member, IEEE, and P. H. Pathak, Fellow, IEEE

Abstract—A uniform geometrical theory of diffraction (UTD)
solution is developed for anmalyzing the phenomenon of high-
frequency diffraction of an obliquely incident plane wave by a
two-part thin, planar transparent material siab. The solution
is obtained by appropriately combining two solutions for the
two related configurations involving perfectly conducting electric
and magnetic ground plane bisections of the original slab. The
analysis is based on the Wiener-Hopf technique, and each of the

material half-planes is assumed to be electrically thin

grounded
80 that it can be modeled by a generalized impedance boundary
condition of 0(t), where t is the corresponding slab thickness. It

is shown that to solve the boundary value problem completely, an
additional condition related to the field behavior at the junction
of the two material half-planes needs to be imposed besides the
boundary and radiastion conditions as well as the nsual edge
condition. This junction condition is determined by matching
an approximate quasi-static solution, which is developed in the
proximity of the discontinuity, with the corresponding external
Wiener-Hopf solution in the common region of overlap. The
solution thus obtained automatically satisfies reciprocity. It is
shown that the new UTD solution obtained here reduces to known
results and the numerical results based on it agree very well with

a corresponding independent moment method solution.

I. INTRODUCTION

HE canonical problem to be studied in this paper is

the analysis of the high-frequency electromagnetic (EM)
diffraction at a planar junction formed by connecting two thin
dielectric/magnetic half-planes. The geometrical configuration
pertaining to this canonical problem is depicted in Fig. 1.
The incident field is assumed to be a plane wave of arbitrary
polarization obliquely incident to the 2 axis with an angle 6’
(0 < & < =) as shown in Fig. 1. The two-part planar material
slab is composed of two dissimilar, semi-infinite homogeneous
and isotropic thin dielectric/magnetic half-planes. One half-
plane is characterized by relative permittivity e,,, relative
permeability u,,, and thickness ¢, for z > 0, and is connected
to the other material half-plane characterized by (e€y,, f4rq,¢:)
in the region z < 0. The present study is an extension of
a previous investigation [1] for a normally incident (6’ =
90°) plane wave. Note that the uniform geometrical theory
of diffraction (UTD) solution for the two-part transparent slab
problem can be obtained by superposing the UTD solutions to
the two related problems of diffraction by perfectly electric
conducting (PEC) and magnetic conducting (PMC) ground
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Fig. 1. Two-pant diclectric/magnetic slab geometry with obliquely incident
plane wave excitation.

plane bisections of the original slab. Fig. 2 shows the ge-
ometries of these two bisection problems and how they are
equivalent to the original problem. It is important to note that
in contrast to the case of normal incidence considered in 1],
the fields E, and H, are coupled in the present case and obey
the symmetry relations depicted in Fig. 2.

The material half-planes in Figs. 1 and 2 are assumied to
be electrically thin; in other words, the perameters (e, i1y, t)
characterizing each of the material half-planes are restricted
so that one can sapproximately replace the grounded material
half-planes by generalized impedance boundary conditions
(GIBC) of 0(t) [2] in a sufficiently accurate manner. By
numerical experimentstion, it can be shown that when the
thickness, ¢, of a thin dielectric/magnetic slab satisfies the
condition Re (\/7ix¢;)t/2 < 0.1), where ) is the free-space
wavelength, the use of the GIBC of 0(t) to represent the effect
of the material half-planes is quite adequate. The PEC/PMC
bisection problems modeled by the GIBC of 0(t) can be

0018-926X/93$03.00 © 1993 IEEE
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Fig. 2. Two-parn dielectric/magnetic slab bisected by a PEC or a PMC ground

plane.

solved by the Wiener-Hopf technique [3), [4]. Nevertheless,
it is noted that for these problems, the Wiener-Hopf analysis
alone does not yield unique solutions because the Wiener-
Hopf-based solution contains unknown constants even after
the radiation and the usual edge conditions have been applied.
This nonuniqueness arises because the GIBC does not model
the material discontinuity in the transverse direction. There-
fore, to completely solve the boundary value problems, an
additional condition is obtained at the junction of the two
material half-planes. This junction condition is developed if
the field in close proximity to the junction is modeled by a
quasi-static solution, which is matched with the corresponding
Wiener-Hopf-based solution expanded in the common region
of overlap. The approximate quasi-static analysis was first
introduced by Leppington [5] and then used by Rojas et al. [1].
Unfortunately, it appears that there are some errors in [S), as
discussed in [1]. Both works deal with the case of a normally
incident field. In this analysis, a similar quasi-static approxi-
mation is extended to cover the case of oblique incidence. In
contrast to certain solutions found in the literature, where the
reciprocity condition must be imposed explicitly, the additional
junction condition developed here yields a unique solution
which automatically satisfies reciprocity. The term uniqueness
is used in this paper to state the fact that the solution for the
slab geometry obtained here contains no unknown constants
provided the following conditions are satisfied: (1) the GIBC
of 0(t) is an accurate model for the thin grounded slabs; (2)
the quasi-static solution is valid near the junction.

The high-frequency EM scattering by nonmetallic objects
has been studied in a more limited sense than the EM scattering
by metallic or PEC objects. Most earlier studies on the scatter-
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ing by nonconducting objects employed impedance/resistive
boundary conditions to model a thin diclectric slab. For
instance, Anderson [6] solved the diffraction problem of a
thin dielectric half-plane by replacing it with an equivalent
current sheet (resistive boundary condition). However, in re-
cent years, the GIBC has been used frequently to treat material
scatterers such as a dielectric/magnetic half-plane (7}-{10] and
a dielectric-coated metallic wedge [11] and half-plane [12),
{13]. In particular, boundary conditions similar to the GIBC
of 0(t) developed by Weinstein were used by Chakrabarti
[9) and Volakis and Senior [10) to study the scattering by
8 dielectric half-plane for the case of normal incidence. Rojas
et al. [7], [8) employed the GIBC of infinite order [14), [15]
to investigate the EM scattering by a dielectric/magnetic haif-
plane. A special case of the boundary condition used in [7],
[8) is the one of O(t) originally developed by Weinstein [2]).
Both TM, and TE, plane wave excitations were included in
[7), [8] as well as the case of oblique incidence with respect
to the axis of the half-plane (8]; however, their solutions
were obtained by enforcing reciprocity without considering the

~ problem of uniqueness. The approach of imposing reciprocity
t 4

was also used in [13] to yield the solution for a coated half-
plane. Bemard [11)] applied a GIBC of 0(t"), where n is
arbitrarily large, to treat a dielectric-coated metallic wedge;
but it is noted by Senior [12] that Bernard’s solution violates
reciprocity. In his study on a coated half-plane [12], Senior
also explicitly enforces reciprocity, and his final solution
contains an unknown constant related to the value of the field
at the edge. A diffraction problem similar to the two-part
slab problem with oblique incidence given in this study was
discussed by Buyukaksoy er al. [16]; but their solution, like
the one in [10), was limited to a pure dielectric where 4, = 1.
A special case of the two-part problem in [16] is considered
in [17], namely, a dielectric half-plane.

Since the two-part slab configurations shown in Figs. 1 and
2 are two-dimensional geometries, all the fields have the same
z dependence as the incident field. Therefore, all the field
components can be expressed in terms of E; and H,. As
mentioned before, instead of solving the original boundary
value problem depicted in Fig. 1, the solutions to the PEC and
PMC bisection problems depicted in Fig. 2 are obtained first.
The configuration with PEC bisection gives rise to the field
(E2, H?) in the upper half-space y > 0, while the one with
PMC bisection yields the field (E¢, H?) for y > 0, where

By = 2@ B0 g - f"(L)‘in_(‘”_),

2 ’
(1)
Ei()= ELZ)_‘:{?'_(‘_”).’ Hi(y) = _’!x_@_“TH;(:_:i_’)

Note that E? and H? are odd functions of y, with E%(y =
0) = H(y = 0) = 0, whereas EX and HS are even
functions of y, with dEZ/3yly=0 = OH:/dyly=0 = 0. In
the following analysis, the PMC bisection problem involving
(Eg, H?) is modeled by the GIBC of 0(t) (2] and thea
solved by means of the Wiener-Hopf method to derive the
scattered field in the form of an integral, where the Wiener-
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Hopf factors in the integrand are expressed in a relatively
simple form based on Weinstein's procedure [2]. Next, an
additional junction condition which is used to completely
solve the problem is developed by matching an approximate
quasi-static solution with the corresponding external Wiener-
Hopf solution. The complete unique solution for (Et, H?)
in integral form is asymptotically evaluated by the steepest
descent method to obtain expressions in the format of UTD.
The solution to the field (E2, H?) is then obtained from the
result for (E¢, H?) by employing the concept of duality.
A superposition of these even and odd fields produces the
result for the original problem. Finally, several numerical
examples based on this solution are presented and compared
with corresponding moment method (MM) results [18). It
is noted that an e~%* time dependence for all the fields is
assumed and suppressed in the following discussion.

II. ANALYSIS
The canonical problem to be considered is the PMC bi-
section configuration depicted in Fig. 2. The field (E¢, H?)
satisfies the Helmholtz differential equation, the radiation and
edge conditions, and the GIBC of 0(t), which can be expressed
as follows:

82
{ o2

—cosﬂ'aax (:y + tKa,)ZoH°|,=o

¥=0

sKa,: +K*(1 + b¢ sin? 0’)}E‘|

720; (2a)

oy a$

2

8 sin(! )
— +iKsin (, — cos 9'——3-(% + iKag) ZoH?|, -0

sm(, OE"
'} 2 — > .
cos @ (1 a ) B 0 = 0, z<0; (2b)
2
where
K=K, +iK;=ksin8', K,,K,>0, K<« K;;
(32)
i
sm(, = m, (3b)
e e (3 i“rl 3c)
- . . = —_—2
a; = sin u,; +smu,,g K(”‘} — 1)‘;/2’ (

€ ain s gin € — 1 _J_a‘ -
b;-sxnu,gaxnu,,;—m sin(;“ 1}, @3d)

e e \2
ginyf =-iigz (&) - b, (3¢)

Note that k is the free-space wave number, and K is tem-

porarily allowed to have a small imaginary part for purposes
of analysis. Once the analysis is completed, the imaginary part

31

can be set equal to zero. Also, it is convenient to express the
solution for (E, H?) as
te=|," ]; @

ZoH?

where f}%,. which is referred to as the unperturbed field, is the
field that would exist if the whole plane {y = 0} in Fig. 2 were
occupied by a grounded homogeneous thin matenial slab with
parameters (e, , 4o, , ¢, /2). Hence, T}, represents the effect
of the material discontinuity resulting from the fact that the
actual material layer for {y = 0,z < 0} is characterized by
(€ras ey, /2) instead of (er,, pr,, t, /2)

Since all the field components of E¢ and H° can be
determined from f,,, the obliquely incident plane wave field
can be completely defined in terms of f},, namely,

f;'. = Fo,e~iK(zcos ¢'+ysing')—ikscosd’ ,

']'=fr,+i1", y>o'

Fo, = Eo: ] 0<¢' <, (&)

where Ey, and Hj, are the magnitudes of the incident fields
ES and HY, !especuvely. at the origin (z,y,2) = (0,0,0);
that is, Eo, = 3E%(0,0,0), Ho, = %H (0,0,0), where E:
and H} are incident plane wave fields in the original problem
shown in Fig. 1. It follows from the definition of f}, that

i =1, +C ' (xr-¢)A"E(x + ¢')Fo.

e~ iK(zcos ¢’ ~ysing’)-ikzcond’. (63).
where
&w) = -cosw sinwcos®
A(w) sinwcosd  cosw |’
Kil) = [72.?1 2 ]’ (6b)
Ay
A(w) = cos® 8’ + cos® wsin® ¢, (6c)
. (sin ¢’ —sinug, )(sin ¢’ — sin vy )
R =~Gngrsme )eng+emr) O
o _ (sing’ —sin(}) .
W= Gy Taad) @)
The next step is to solve for the field ff, by means of

the Wiener-Hopf technique. At this stage of analysis, the
factor e—**+>?" s dropped to simplify the notation, and
it will be reintroduced after the analysis is completed. Note
dmtbebonnduymditiomuﬁsﬁedbytheﬁeld f!
be obtained easily by substituting the definition of f} m (4)
and the solution of the unperturbed field £, gwen ‘in (62)
into the GIBC of O(t) given in (2). Taking the one-sided
Fourier transforms, which were defined and discussed in {1],
of the new set of boundary conditions for f7,, one obtains the
boundary conditions in the spectral s domain which couple
<3(s,0) and H2%(s,0). Here, E25(s,y) and H33(s,y) are
the one-sided Fourier transforms of E2*(z,y) and H2*(z,y),
respectively, with the subscript + denoting a function regular
in the upper half s plane defined by Ims =7 > 7_ = - K,
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and the subscript — denoting & function regular in the lower
half s plane 7 < 7, = K, cos ¢’. It is noted that the GIBC of
0(t) in the spatial domain becomes uncoupled if it is expressed
in terms of the normal componeats (y components in this
case) of the fields. Thus, one may also decouple the boundary
conditions for the spectral fields in the s domain by introducing
the following auxiliary functions:

x&(’t”)

= - R [ RHE ) + o 2 TS 00)], O

Zi(a,y) = [ai;‘;(a.v) icost' 2 208 ;(a,y)],
)

and

x(’s ﬂ) = X+(’7y) + X-(‘! y) '
Z("’ y) = Z+(3, y) + z—(’v y) . Gc)

'l‘heboundarycondmonsmd:esdommncannowbeexpnssed
via (7a) and (7b) in terms of the unknown ﬁmcuons Xy(s,0)
and 2, (s,0) instead of E2%(s,0) and H23(s,0). Following
the Wiener-Hopf procedure (Jones’s mcthod) as in {1}, one
finally obtains two Wiener-Hopf equations which hold in the
strip 7. < 7 < 7, for the unknown functions X4 (s,0) and
Z,(s,0) as follows:

D2(s) - -g—:{—::—g—;x_(s,o)
Gi(s, ,
N Gig":' g:;x+("o) - D+(’) , T-<17<7,, (83)
(s - S0R)G- o) o

G_(3,v,)C—(8,1%,)
TR RN

ae G4 (8,05,)G4 (8,4 )Z+(a, 0) -~ D3.(s),
T- <7< T, (8b)
in which
G(8,v) = G4+(s,v)G-(s,v) = F‘_”I(\’m, ©8)
B=vKi-#, Im(B)>0; (9b)

the functions D3° are defined in Appendix I, and the ex-
pressions for G4 (s,v), which are obtained using Weinstein's
procedure [2], are summarized in [7] and are not repeated
here. The intermediate steps that lead to the Wiener-Hopf
equations in (8) were discussed in detail in [19]. Note that
the functional forms of D3:° are known; however, it is seen
from the expressions of D3:° in Appendix I that they contain
some unknown constants related to the surface values of the
fields at the junction, namely, E¢*(0%,0), H2*(0%,0), and
HZ*(0*,0). These constants arise from the one-sided Fourier
transforms of the terms involving derivatives with respect to
z in the original boundary conditions.

Equations (8a) and (8b) have a common overlapping region
T. < T < 7, in which the functions on the left- and right-
hand sides are regular. Hence, by analytic continuation (3],
{4) the two sides of (8a) define an entire function denoted by
P°(s), and the two sides of (8b) define another entire function,
P*(s). Since the edge condition allows only algebraic growth
of the fields in the neighborhood of singularities [3), it follows
from the extended form of Liouville's theorem [3], [4]) that
P°(s) and P*(s) can be expressed as polynomials determined
from the behavior of (8a) and (8b) as |s| — oco. Applying
the edge condition, which is related to finite energy near the
discontinuity and thus implies that the components of the
fields parallel to the edge are bounded, one can expand both
sides of (8) in series up to the terms of 0(s~*) as |s| — oo.
Note that the asymptotic expansions of the ratios involving
the G functions presented in (8) were given in [1]. Thus,
comparing the coefficients of the corresponding terms in the
expansions of both sides of (8), one obtains three independent
equations for the unknown constants E¢*(0%,0), H2*(0%,0),
and Hg*(0%,0) as follows:

H>(0*,0) = H*(0",0), (10a)

EZ*(0%,0) = E3*(07,0), (10b)

ZoH,*(07,0) =

Zo[agHZ*(0+,0) — atHE' (0", 0)]( 1+ ;)

-ae
KE(0*, 0) asht —-a‘b‘
a¢sin @’ [ a$ —a¢ 0‘]&
+n/2—1r[4,,r+(1{oos¢)+ 'a],
(10c)

where A%, C¢, T, (s), a, and § are defined in Appendix I.
The y components of the fields are given by

i 3 4
ZoH, = ——[ 2 E, ooso'—-z H, (10¢)
0% = Ksind |0z 0

Furthermore, it follows from the asymptotic expansions of (8)
as |s| — oo that the polynomial P°(s) is a constant given by

P°(s)

] é: sin ¢ o8
=7{m Vo oH0.0)
eoso'zo [H;'(O*,O) __Hg(0-,0) }
t oreinG —sing) 1+ brsin?f 1+ bain’6

(11a)

where C2 is given in (40b); and P(s) is  linear function
of s, namely,

P*(s) =ms +mn, (11b)
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(11¢c)

T OO

[65‘"(0 0) aZo{asHy*(0*,0) - e} H;*(0-,0)}
72=1r atKsin¢ at(a¢ — af) )
(11d)
Since the three independent equations in (10) are not enough
to determine the six unknown constants, some other con-
sidcmionsmneededtodetenmned:eﬁmlthmplem
of information so that a unique solution is obtained for the
problem at hand. It is noted that the fields £2° and H?*, which
are solutions to the Helmholtz differential equation together
with the radiation condition in the s domain, are given by
E:.(’v y)= E:l(a’o)eiﬁy ’
H2'(s,y) = H2(s,0)e%Y, y>0. (12)

Hence, it follows from (7) and (12) that
k[sZ(s,0) + fcos ' X(s,0))] ety

E:.(”y) a2 + k2 cos? 6’ y2 0,
(13a)
- on k[-8X(s,0) + fcos@' Z(s,0 ¢
ZOH: ("a y) - l (’2 4)’ kziosz 9 ( )] By
y20. (13b)

The expressions above determine the spectral z-component
fields from X'(s,0) and Z(s,0). However, in both of (13a) and
(13b), there are two poles at s = tikcus 8’ whose residues
introduce nonphysical (exponentially growing) fields in the
spatial domain [20]. Therefore, these two nonphysical poles
must be suppressed by setting the residues of £2* and H2* 10
zero at s = ik cos@’; in other words, two more mdependent
equations are obtained as follows:

+iZ(xikcos#',0) + X(xikcoss’,0)=0. (14)

At this point, it remains to impose one more constraint
to completely determine all the unknown constants in the
expressions for X;(s,0) and 2, (s,0); this in turn will lead
to unique solutions for ES* and H2* by means of (7c) and
(13). The additional constraint, which may be called a junction
condition, is found in this study by following a procedure
similar to those used in {5] and [1), where an approximate
quasi-static solution for the total even field, Et(z,y), is
obtained in the neighborhood of the junction. Note that this
quasi-static solution is valid outside and inside the material
layers of the material coated PMC ground plane (refer to Fig.
2).

IIl. DETERMINATION OF JUNCTION CONDITION

Let E? (z,y) denote the total even z-component quasi-
mc field outside the material region. Also, let EY (z,y)
and EZ (z,y) be the total z-component fields inside material
medium 1 {z > 0} and material medium 2 {z < 0},
respectively. Note that the superscript ¢ is used to denote a
quasi-static field. The fields EY, . satisfy Laplace’s equation
in the region Kp = K/z7+ ¢ < 1 along with the boundary

across the free space-material and matcrial-material inter-
faces. Note that the s-dependent factor ¢4 %' hog been
suppressed to simplify the notation.

Following the same discussion as in [S) and {1], the quasi-
static ield EJ_ | | within the region of interest ¢, €p€K?

80,13
may be expressed as
EY .= A+ ¥, (15a)
©,~Byz+Cilnp, lsp/t; — 00, (15b)

where A,, B, and C,; are constants independent of z and
y- In other words, EY, . exhibits logarithmic as well as
algebmcmwthasp/t.-*oo The key step in this section is
wdamnememhnonshnphetweenthelommm
and the algebraic growth (or the relationship between C, and
B,), which can be accomplished by using the integral form of
Laplace’s equation, namely,

. ]
fiVE:o.l.i -fdl = fi -én—E:o.ma =0, (16)

where i is the outer normal of a closed contour L. Applying
(16) inside material medium 1 with the contour of integration
as follows:

(z—o y= 0)—’(301 0)‘“.( o"' -_ (01 0),
where z,/t, — 0o and the labels above the arrows denote the
paths of integration, one obtains

(0,0)
B, + /l:m 8—E—"-dl 0.

(‘.n f /2)
interfaces

Integrating along a similar contour, but in dielectric medium
2 yields (as z,/t, — o0)

...B' t./‘a“’“/ (0 0)

Likewise, integrating (16) along the following contour in free
space (assuming £; > t3):

(172)

(-20.t2/2) §EQ

——1 dl=0. (1)

(20, 3) TS (20, 3) T (20, ),

t
(-zo) ;) Toy 2

one obtains (as z./t; — 00)

(‘Ov‘ ’z)
' -a;énE—:'-dl 0. (17c)

B"’ - tl

+Cex+ lim /
2 - fi 47 (2o ta/2)
interfaces

Note that the same equation as in (17¢) is obtained if it is
assumed that ¢, > ¢,. To find the relationship between C, and

-B,ﬁm(ln.ommﬁmﬁndd\euhuomhpmgme

derivatives OE§_ , . /On. It is noted that 8
expressed in terms of the tangential H field
6E?

2 A +eos0’(—gl—'- +d:eos0'H')]
(182)

/On can be

hl"

A
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8E},, = Zo|~ikpr, HY , 0059' from (21a) and (22a), one may rewrite the expression for §,
on 0| 7" na s given in (15b) as follows:

He
.(8 2o +ikcon 0 HY, )] (18b)

where H = = [-HS,, and [ is the direction of the
mlzgntlon puhulong the interfaces. Thus, substituting (18)
into (17) and applying the boundary conditions which require
H} = H}  and OH} /8l = OHY, /0l at the material-free
spwe mterface. HY = H{ and 3HS /0l = OHY, /8l at the
material-material mwrfaoe.oneobmns

Y +un(é§"+¢i‘.”)+--—(i“’+ﬁ:”) 0,

“Be + (@ - ) + (g
x|

2 - &) =0, (%)

By(B52) + Cor - @+ ) - con 0@ + ) =0
(19¢)
in which
go@e = —ikZo/ H{ dl, (20a)
imerface
g = Zo/ (szOSO'H' 3; )dl. (20b)

interface
where q‘,". ﬁ}”. and d‘” are, respectively, the integrals along
the free space—medmm 1, free space-medium 2, and medium
1-medium 2 interfaces in the directions of -z and ~3.
Eliminating §("® in (19) yields

- Q,By+cos8' Dz =0, (21a)
t 1 1
Q= E(E - ;-f-)’ (21b)
> I R SRR PR (I S )
D = [(ur.er. l)q’ * (nr,en 1)e”
+ (_1_. - ._1._) q;"] : @lc)
“flc"l “':e"z

Note that Dy given in (21c) is a constant because the
definite integrals g{"<*-(® evaluated along the horizontal or
vertical interfaces between the different media yield constants
independent of z and y. Similarly, eliminating ¢ in
(19), one obtains

- Qqu + bql =0, (22a)
1 1 1
@-%(mg-mg) o
Dql == [(“'xen - l)‘i(xl) + (l"‘ze"z = l) >
+ (“"1 €ry = Bra€ry )q.?)] . (22‘:)

D,, is also a constant as a consequence of ¢{'>» being
constants. By solving B, and C, in terms of Dy and Dga

m~¢%ﬁu+qm»«mr545u+mm»

as p/t, — 00.

’ @3)
Since the quasi-siatic solution is used only for matching, no
ﬁmhermalyslsulequued.

A junction condition can be obtained by matching the

quasi-static solution developed above with the eonespondm;
Wiener-Hopf solution within the region of overlap t.
p € KL, Notedmthereg:ont.(z(l(‘ mthe
spanﬂdomnnmsfmmmtheregxonl((lﬂ < !
mmespecmladomnn'musdleappmxmmonofﬂn
evenscauztedﬁeldE“(z,O)mdnmgxont, €z €< K?
anbefoundbyuhngdremvml’ouwm:fomofme
mncuonE:;,(sO)expmdedmasmesofamthcregxon
K<|.s|<t’1 E¢*(5,0) can be obtained via (13a), and

|tcand|enbedecomposedmtoasumof5‘:'+(30)and
ke gs, 0). Without going over the details, the asymptotic form
for £2%(s,0) in the region K < |s| <« ¢! is given by

2

Bzt (5,00~ 22 i’;
' Zo{agH;'(O’,O); afH*(0-,0)}c, cos#sin(iCe
| NG sin(} —sin(*

ik cos 6’ \/sin Crsin(F{EZ*(0*,0) -
V2 (sin ¢} —sin (*)

.
. 12 +2”ln+8]

akJEfEon{H;‘(O*.O) - Hg*(0-,0)}
- V2x(af - af)

. [;12'+£g'—‘ln+8],

1 cos? ¢ sin (! sin

e = - - - .
'~ a—af ~ afaj(sing} — sing})

E;*(0-,0)}

(24a)

(24b)

The asymptotic expansions of the ratios involving the G4
functions in the regionK <« [s| <« ¢! were given in [I).
Taking the inverse Fourier transform of (243) and then adding
to the unperturbed even field ES%(z, 0), which is expanded in
Maclaurin series of T up to the term of 0(z), one obtains
the behavior of the total even field ES(z,0) (after some
simplification) in the region of interestt; < z < K as

E3(z,0) ~ constant + ¢,z
zk\/E‘?Zo{H £(0+,0) -

(a5 —af)

He*(0-,0))

(z+Q,lnz)
skeosO’\/sm(, sin (A {E2*(0+,0) — E2*(0-,0)}

(sin¢? - sing?)

(z+Q:lnzx), (25a)

&

e
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iKsin®s2Z

a3 H3(0*,0) ~ aHz(0",0)
sain @ + K* cos® ¢

« o ’
@5b)

where s} is defined in (42b) and Hy is the toal normal
field. Comparing (25a) with (15a) and (23), and noting that
Inp ~ In z in (23) along the free space-material interface, it is
seen that (25a) and (15a) are only matched when the coefficient
C, in (252) is identically zero, that is,

Com—

) 1 ein-
;-:-H,(O*,O) = 'a_:Hy(o ,0). (26)
mcouditionnbove.whichisalleddxejnncﬁonc;ndiﬁon.
together with (10) and (14) determines all of the unknown
constants, and complete solutions for £2* and H2* can now
be obtained by means of (8) and (11)-(13).

IV. UTD SOLUTIONS
At this point, the field f7, is readily obtained by taking the
inverse Fourier transform of (E¢*, H?*) and reintroducing the
factor e~ ks <08’ gypporessed earlier, namely,

. | EF
f1.: e [ zo H:']
—_ e throost’ foo E“(a, y) —isz
= Jelnbren) V2o
(27a)

Since one is interested in finding a high-frequency UTD solu-
tion for f;, when Kp — oo instead of numerically integrating
(27a), it is convenient to employ polar transformations to the
variables in (27a). The transformations are

a=—Kcmw, ﬂ=Ksinw, y=PSin¢,

(2T)
where w is a complex variable. The field ff, can then be
expressed as follows:

e—tks cos (4

2xi

z = pcosd,

f5.(0.6.2) =

/ Fra(w, ¢'; @ )eiKooolo=b)gy,
r

020, 0<y <x; (289)
where the integration path I' in the w plane is the same as the
one in [1, fig. 3]. Without going over the details, the spectral
, function Fy,(w,¢';#) is given by

Fis(w,¢';0)
= 8(w)¥(v)sinw [ﬁ%@% +B(w,¢'; 0')]
-sin ¢'$(¢")2(v°,¢*)E(¢')Fos; (28b)
where the matrix € was defined earlier in (6b), and
200=2"5" g lme) ™

s
‘(-)-
['9 (w, V:; ). (. V“ Jo_(w, ":, )i- (w, "‘, ) o
o 2. (w.Ct)e_(w.))
(29b)
1. Ay O
A(W,¢'a’)— [ 0 Au]l
Ax =gin’# coswcos¢’ —cos’#, (29¢)

Al = ~Azx(cosweos ¢’ + cos® we) + (cos w + cos ¢')
. [Anwf- +m,.,(co-vco¢0 + cos’ we -euw-cao')].

A(w,) A(we) cos we
(29d)
B(w,¢';0) = cot N (w,0)M(¢'.0), (%)
ot oo |V (@,0)8(w;)
Mi¢'.#) = [:’;w,w);(w:) '
R _ Ve (w,0)¥(wy)
Moo= (G osn) @
Yo - {h(w,)oosw, -“¢'}A(w¢) . . 2 A
02 (¢, 0)= | el sememoed et
(29g)
_ [ = cot 8 £ ik(w,) cos w, .
Vﬁt(w,y)" [ h(w;)c“uk—'“w |l]y (29h)
in which V% are row vectors and
9s (w,v) = Gt(-kmwa II) ’ (302)

h(w.)

_ “:93 (we, v, )93 (we, 13, )+ aggi (we, ":3)93, (we, ”:,)

B afgi (we, ¢, )93 (we, 5, )- a:ﬂf (e, Vg, )93 (we, V:,) ’
(30b)

X, .
w,*=-2—:t:ln( = (30c)
A(w) and s, are defined in (6c) and (42b), respectively.
Note that when &' = x/2, the matrix B becomes a zero
matrix, C(w) becomes diagonal, and the spectral function
Fi:(w,¢';8") in (28b) reduces to the corresponding solution
found by Rojas ez al. [1] for the case of normal incidence.

Evaluating (28a) using the steepest descent method as in [1]
and adding the unperturbed field £y, yields the total field fi.,
which is given by

hiod.2)= [ZOE;;:] =0+, +0r+1,,
0<¢,¢' <. a1

The first term, f},, in (31) is the incident ficld defined in (5).
The second term is the reflected field given by

£, =& - )RV - 8- )+ RV + ¢ - )]
- O(x + ¢ )Fp e iKroosbts)ibscnl 32)
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wmvnmemumpfuncm:ndﬂmmthenﬂem
coefficient matrices defined in (6b). The third term, £{®, in
(31) is the surface wave field expressed as

1.: = {-"'(w:u )eix'“‘v" “)U(¢n - ¢)
+ f,.(w:”)eikpc“(v:, -‘)U(é - ¢.,)}e'“" eou”
(332)

Reuf, 1
%0 = | +Rest ] * arocos [oooh(lmv:‘)] r O
2

F.(wg,)and F, (v m) are the residues of 7, at the s\nfaee

wave poles w;, = —uf and wj,, = v + v, respectively,
that is,
Fa(uf,,) = 8wl )P (w3,
A, ¢38) ',
[ iy +asag * Bh 'y)]

-sin ¢'¥(¢")2(°,¢*)C(¢')Fos;

t1=1,2 (33¢)

wnh P; i (ws,,)s i = 1,2, being the residues of smwi'(w) at
. The last term, f{‘,. in (31) is the edge-diffracted field

g;ven by

iKp—ikzcos 0’

fl.dz(p’ b, z) ~ L_‘/'-'ﬁ'—_ﬁl(¢: ¢'; ol)f‘o‘n

0<¢,¢' <x, (34a)

where D (,4';8) is the uniform diffraction coefficient ma-
trix for the junction of the two-part material coated PMC
ground plane, which can be expressed as

T - i*
D1(8,¢';0)F o, ;fm
S5
: {fxx(d’, #:0)+ 3t ‘—%’—{(—"—U} (34b)
=l :
in which
i = sin ('”",;"), i=1,234,5 (40
w,=x~-¢', w,= wi,,, w,=uj,,
wd=-Cl’ ws""'(zv (34d)

E = é-l(f - #)(Ml) - Ai”)é(* + ¢,)F0: ’ (34¢)

l.', = i,,,(w:“), ia = i;"-(w:n)’ (34

r, = E(w)B (v, [—ﬁ% +ﬁ(w.-,¢';o')]

-sing'$(@)2(0°,¢" )0 F0s; i=45 (34D

where P;(w;). i = 4,5, are the residues of sin w ¥(w) at
w;. The function F(z) in (34b) is the well-known transition
function {21} given by

F(z) = 2‘«;8“‘/:3-“,&| -_35" < u‘(z) < %o

(34b)
where the branch cut for F(z) in the complex z plane is the
positive imaginary axis. Note that when the magnitude of z is
large, F(z) approaches 1. Therefore, as Kp — oo, the only
mmleﬂintheexptusionfaﬁl is the first term,
which is referred 1o a5 the far-zone diffraction coefficient Dy
It is important to note that the UTD solution obtained above
satisfies the reciprocity property; in other words, Dyz satisfies
the following condition:

Di(¢,¢':¢) = D.(¢'.4:¢),
Bre= [P 22| Duld.#i0)=Duie 0i0).
" Dy(¢,¢':8') = D,u(d', ¢,0')(35)

The derivation of the above symmetry property is discussed
in Appendix II

As stated earlier, f;, is only part of the solution for the
canonical diffraction problem of a two-part material slab
illustrated in Fig. 1. The remaining part of the solution is the
field f,, which is defined as

ﬂ

_| E2p.¢.2)
fo:(p9,2) = [ZoH,'(p,¢,z)]' 0<¢<w. (362
Note that £, is the solution to the other half of the bisection
problems (see Fig. 2), namely, the two-part material coated
PEC ground plane. Also, f;, is readily obiained from the
solution f;, if the concept of duality is employed. Thus, the
total field, f3,, of the PEC bisection problem is given by

f:(0,6,2) =8, + B, + Hr +15,, 0<¢,¢' <x, (36b)

where the reflected field f7,. the surface wave field ¥, and
the diffracted field £, respectively, have the form of L,f],.
L.f>, and L, 72, except that the off-diagonal terms of all the
matrices in (32), (33a), and (34a) change signs, the magnitudes
Eo: and ZoHy, are interchanged, and the parameters e, , and
Ur, , 8re interchanged; the matrix f; is defined as follows:

1'.1=[ ] (360)

The solution (E,, H,) to the original problem shown in Fig.
1 is obtained by superposing the solutions to the two bisection
problems, that is,

Es(P) ¢, z) = E:(P, |¢|v z) + agn(¢)E:(p, |¢|v z),
-x<P< T, (37)
H (0, 9,2) = H;(p, |4, 2) + sgn(4) H:(p, 4], 2),
~-x<PL X, (3m)
where sgn(¢)=1if ¢ > 0 and —1 if ¢ < 0. If one defines

t=[zn) L=[o ) 0w

. —
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(37) can be rewritten as
Lpda)=L+L+B+E"+E,

0<|¢.¢ <, (38b)

where
L=t (1+ "") =@ +BIUE@), 08
= L[f].(~¢) - B.(-9)]U(-9), (38d)

= L etre) + et

V. NUMERICAL RESULTS

The UTD solutions developed in the previous section for
the two-part planar material slab and the related geometries
consist of simple functions, most of which are amenable
to numerical computation. The only functions that require
a simple numerical integration are g, (w,v). This simple
integration can be quickly and efficiently computed with a
Gaussian quadrature. In Fig. 3, the 2 component of the total
field, which includes the scattered and the incident fields, for
the two-part thin material slab is presented. It can be seen that
the total field is continuous across the shadow boundaries of
the incident, reflected, and surface wave fields. Furthermore,
it is noted that a superposition of the two sets of GIBC, which
were employed to replace the two bisection configurations in
this study, is equivalent to a “jump” boundary condition being
used to model the original two-part transparent slab. Hence,
discontinuities occur at ¢ = 0°, 180°, and 360° formeruults
shown in Fig. 3.

To test the accuracy of the UTD solutions, the singly edge-
diffracted fields in the far zone are computed for a thin material
half-plane where the incident field is an obliquely incident
plane wave (6’ = 45°) of two different polarizations (T'M,
and TE,) and ¢' is fixed and equal to zero. The UTD solutions
are compared with independent MM results as shown in Fig. 4,
where the diffracted fields E¢ and Zo H¢ are given as functions
of the scattered angle ¢. Note that the UTD solution for a
material half-plane can be easily derived from the solution
for the two-part slab geometry if one replaces either material
medium 1 or 2 with free space. This can be done by letting
the corresponding ¢, — 1 and u, — 1, or by letting the
corresponding thickness ¢ — 0 in the solution obtained in the
previous section. Note also that the MM solution for a singie
edge was obtained from a material strip of finite width by
a time-domain isolation technique [22], which provides good
results only when the field diffracted from the first edge of the
strip can be fairly well isolated from the effect of the second
edge; that is, when the scattered angle ¢ is not far away from
0° so that the difference between the path lengths for the field
scattered from the first and the second edges is not small. Since
the region near edge-on is the most critical, Fig. 4 provides
a good indication of the validity of the UTD solution, and it
is seen that the agreement between the UTD and MM results
is very good.
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In Fig. 5, the singly edge-diffracted fields in the far zone
are computed for a thin material strip based on the newly
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ZgHg, = 1.

obtained UTD solution, where the strip width is 7A and the
scattered angle ¢ is equal to the incident angle ¢'; the incident
field is an obliquely incident plane wave (§' = 45°) of two
different polarizations (T'M, and TE;). The results computed
from an independent MM solution for the material strip [18]
are also included in Fig. 5 for comparison. It can be seen that
the agreement between UTD and MM solutions is excelient
for the observation aspect away from grazing. By including
multiply diffracted fields for a finite strip as was done in [23],
the results based on UTD can be made very accurate even in
the region of grazing incidence or scattering.

V1. CONCLUSION

A uniform asymptotic solution to the problem of high-
frequency diffraction by the planar junction of two thin ma-
terial (diclectric/magnetic) half-planes has been developed in
this paper. The incident field is assumed to be a plane wave of
arbitrary polarization, obliquely incident to the axis or line of
discontinuity in the otherwise planar two-dimensional material
structure. The two-part transparent slab problem is not solved
directly; instead, the solution is obtained by appropriately com-
bining two solutions for the two related configurations involv-
ing PEC and PMC ground plane bisections of the original slab.

Acwally, only the PMC bisection problem is solved using the
Wiener-Hopf technique afier the two-part grounded thin slab
configuration is modeled by the GIBC of 0(t). By employing
the duality principle, a solution to the PEC bisection problem
is then obtained. Finally, a superposition of these solutioas
provides the result for the original problem. The final solutions
are expressed in the high-frequency UTD forms, which involve
relatively simple functions amenable to numerical calculations.

The application of GIBC or generalized resistive boundary
conditions (GRBC's) of 0(t) yields second-order derivatives
of the fields. This creates difficulties with magnetic dielectric
materials because it gives rise to solutions which are neither

" unique nor reciprocal even after the edge condition has been

applied. In this paper, the problem of uniqueness is solved by
imposing a newly developed junction condition in addition to
the boundary and radiation conditions as well as the usual edge
condition. This junction condition is obtained by matching
an approximate quasi-static solution with the corresponding
Wiener-Hopf solution in their common domain of overlap near
the edge (or junction). The solution obtained by this procedure
yields a diffraction coefficient which automatically satisfies
reciprocity; such a useful result obtained here is in contrast
to the results in some papers found in the literature where
the reciprocity condition has to be enforced explicitly. Note
that the reciprocity property is not as readily apparent in the
solution for the case of oblique incidence as it is for the case
of normal incidence. Thus, the development of the reciprocity
condition for the case of oblique incidence is provided in
Appendix 0.

The UTD solutions given in this paper are uniformly valid
across the shadow boundaries of the incident (or transmitted),
reflected, and surface wave fields. To verify the accuracy of
the newly obtained UTD solutions, numerical results based on
UTD are computed for some geometrical configurations and
compared with corresponding results based on an independent
MM solution. It is shown that the agreement between the two
solutions is very good. Finally, it is noted that the solution to
the two-part problem can also be applied to some special cases
where either or both of the material half-planes in Fig. 1 reduce
to free space, PEC, PMC, or resistive sheets. By including mul-
tiple interactions between the edges when their effects on the
total scattering are significant, the UTD solutions obtained here

can even be extended to treat inhomogeneous thin material

strips with slowly varying electrical properties upon replacing
them by sections of piecewise-constant material properties.

APPENDIX 1

The functions D?(s) and D°(s), which are regular in the
upper half s plane 7 > 7_ and the lower half s plane r < 7,
respectively, are given as follows:

07y i
A (YOI

,{Gw.c:) A2
Gt(-’,C{‘) 8~ Kcos¢/

+C’:+C°‘]

G4(Kcos¢',(}) A2 5 (39)
G4(Kcos¢/,(})s— Kcosg/ |’
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where
_ cos [ |E3*(0+,0) - E3*(0-,0)]s
c* 72':{ Ken?
+ cot @ Zo[sin ¢* Ho*(0°,0) - sin ¢* H>*(0",0))
H(04,0)  H(0",0)
+Z l+b‘sm’0’ l+b¢sm0’} . 00
_ 1 _(sing; _sing} I peu
é:-ﬁ;sino'{ ( o )“ymwf le=g
R [(sinc; _ sinc:)icos?o'g
as at K &8y
+ (sin¢} - sin¢)sin? o']on:"l..o}, “0n)
y=0
o _ . [ZKsing(sing} —sin¢})
A= x sin ¢’ + sin Eou, (40c)

and Eg, is the magnitude of the normal component of the
incident field E* at the origin. Likewise, D3 (s) are given by

D5(s) = Ta(s) [——m +C:+ c"]

Ae

:mT+(KC®¢’), (418)
T _ 1
R R )
. ,G+(3 v )G+(3, lgl
[“’ Gr(a,72)C4 (0,%) T @ “’]’ “n
T (s)= 1

(5= an)(e = o)

[ (G-(8,05,)G_(s,0%,)

GG, v, )C_(o.v% 3 )+a3+6], (41c)

o=
1 [ ¢ Gl80,5,)Gs(06, ) _  Gil8e,v2,)Ce{3e,5,)
Gi(8¢,VE,)Gil8e,v5,) 7 Gil8e,v5,)Ga(2e, v5,) ’
41d)

6:
_ _1_[ Gil8e,V2 )G 80,08, . Gal8e,vE,)Gilse, )|
2| " Gy(se,v2,)Go(8e,15,) ’G+(a,. )G.,.(a,,v.l)
Ale)

= W‘;.:{zo a5 H2°(0%,0) - a3 H3*(0~,0)]s
+ ata$ cot & Zo[H2*(0%,0) — H2*(07,0))s

(a’—K’b‘ cos? §)al E2*(0*,0) — (52 = K285 cos? #' )a ET*(0~, 0)}
Ksin ¢

(42a)

.:=K'(1+ 1% = ) Ims, >0,  (42b)
ol - of

= 'sz%ﬁ{ [(a:-af)%-o-ix(b:-bf)dn’ o‘] Erlemg

— iK cos & cos ¢'(af - a:)ZoH:“l,.o}. (42c)
y=0

2sin¢/(a$ - a®)(K?cos? ¢’ — s2)

x sin’ ¢’ + atsing’ + bt

and Hoy is the magnitude of the normal component of the
incident field H;' at the origin.

A= ZyHy,, (42d)

APPENDIX 11

Let the entire upper half space {y > 0} of the PMC
bisection configuration depicted in Fig. 2 be enclosed by a
surface S. The reciprocity theorem in the most general integral
form for the entire region enclosed by S is given by

-ﬂ(s.xﬂ.-s.xn.).ﬁ'a,

s

=///(E..J.,-§.-m-s...J.+m-M.)du,
v

(43a)

wherthsmevolumeofdnenmemgnonenclosedbyS
#’ is the outer normal of S. J. and M. are, respectively, the
elecmeandmagneuccummdcnsmesofsoumcsaandb E.
and fI. are, respectively, the total electric and magnetic fields
mdxatedbysoumesamdbmmepmsenoeofthemteml
coated PMC ground plane.

Let source a be a line source consisting of traveling line
currents with e~#*°*® dependence. As source a recedes to
infinity (but is still captured inside S), the incident field radi-
ated by source a becomes a plane wave field obliquely incident
to the z axis with an angle #' measured from the +2 axis. By
the law of diffraction, the diffracted rays emanating from the
edge (z axis) due to source a form the surface of a cone
making the same cone angle with the edge as the incident ray.
In other words, the angle formed between the diffracted rays
and the —z axis is 8. Thus, to check the reciprocity property
for the solution of the total field which includes the diffracted
field, one would like the second source (i.c., source b) to be
a line source with e***<** dependence so that it excites an
obliquely incident plane wave (as b recedes to infinity) in free
spacew:dunmglew—d’mmedfmmme-o-zms It

follows that
// J: dv= iI:c*“"”" v.
v

/ / M: dv= sr;"e*“"“" ; (43b)

wheteI.,;nndI'".mthemgmmdesofﬂ:eeonupmng
electncmdmagnenccmems Furthermore, since the bound-
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ary condition at the PMC plane (y = 0) together with the
radiation condition (as p — o0) force the left-hand side of
(43a) to vanish, the reciprocity condition reduces to

[Eeo (B)s = Ha, (BO) I s "
= [Eq (L) = Hy ()IT)e™ =", (430)

where 5, and 7} denote the the locations of sources a and b,
respectively.

Since both sources a and b recede to infinity to produce
plane wave incident fields, the evanescent surface wave fields
vanish at the locations of the sources. Furthermore, it is well
known that the geometrical optics fields satisfy the reciprocity
condition. Therefore, it remains tc be shown that the diffracted
fields satisfy condition (43c). Applying (34a) (as p — co) to
(43c) yields, after some simplification, the following symmetry

property:
A Du 2
Pr = [ " D,,]’
Dn(¢;n ¢£; 0') = Du(¢'¢) ¢£;' - 0') ’
Dﬂ(¢£’ ¢,¢; 0') = D22(¢’¢s ¢£;‘K - 0') ’ (44)
Doy, 00:8') = =D (¢, 047 — ¢');

where Dy is the far zone diffraction coefficient for the PMC
bisection problem. Thus, to show that the UTD solution for the
PMC bisection problem satisfies reciprocity, it is sufficient to
verify that (44) holds for Drz. It can be shown from (34a)
and (28b) that D;.-; indeed satisfies the condition in (44).
Furthermore, since D,, and D,, are not changed when #' is
replaced by x — &', whereas D,, and D,, change sign when 8
becomes x — ¢, (44) can be rewritten as (35). Note that via
the duality principle, it can also be shown that the solution for
the PEC bisection problem satisfies the reciprocity condition.
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Scattering by Thin Wire Loaded with a Ferrite Ring
N. Wang and L. Peters, Jr.

Abstrect— This communication presents aqaled mv
u—muum«-—mm the preblem
dmhgbyaﬂnmm-tdlﬂrmmvﬂ
ferrite loading. It is proved that the ferrite icading can be used %0 reduce
the radar cress section of leng thin sbjects at their resenant freguescy.

1. INTRODUCTION
It has long been recognized that ferrite beads can be used in lieu of
inductive chokes to prevent unwanted energy from being coupled into
power supplies. This same concept can be used to reduce the RCS

by thin conducting wire joaded with a ferrite ring. The reduction of
RCS of long thin objects by ferrite loading is demonstrased in this
comsunication by the sumerical results.

II. ANALYSIS

Consider a thin conductor (wire) illuminated by an incoming plane
wave. A ferrite ring with permeability u. is placed concentrically
at the center of the wire. The geometry of the problem is shown
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in Fig. 1. The thin wire has a radius a and a finite length !. The
cross-sectional area of the ferrite ring is equal to xc.

I is assumed that the wire is electrically thin such that only an
axial current, I, is induced on the wire and I, has no circumferential
variation. It is also assumed that the area xc? is small enough that
the induced magnetic field intensity, Hy, inside the ferrite ring is
uniform and circumferentially orientated. A coupled integral equation
for the unknown axial current, I,, and circumferential magnetic field
intensity, H,, is formulated below.

Employing the well-esuablished thin-wire theory developed by
Richmond [1}, the following equation along the axis of the thin wire
is obtained:

EX(I.)+ EX(My) = -E:. m

Here EZ(1.) and E}(M.q) are the free-space ficlds generated by

the induced electric current, I,, and the equivalent magnetic current

source, M., respectively. E; is the incident electric field and
M, = éjwpo(p. — 1)H,. @

In the above equation, H, is the unknown constant magnetic field
intensity inside the ferrite ring, and M, is confined by the ferrite
material.

A second equation for I, and H4 can be obtained by noting that the
total magnetic field intensity, Hy,, inside the ferrite ring is given by

Hy = Hy + By(L) + Hy(My,). ®

In this equation H} is the incident magnetic field H3(I.) and

?v;egmq)mmeﬁwwﬁddsmdbyl.dmm-
tively.
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Fig. 2. RCS of a half-wavelength dipole with a ferrite bead placed as shown.

A solution to the coupled equations (1) and (3) using the methods
of momeuts is outlined below.
The induced electric curreat, I, along the thin wire is expanded as

N
L(z) = Y _I.Fu(2),
axl
where I, are unknown constants and F,(z) are the piecewise-
sinusoidal expension functioas discussed by Richmond {11.
The induced magnetic field, H,, inside the ferrite ring is repre-
sented by a coonstant term:

Hy = Inn1 P(4), )
where In,; is the unknown coefficient and P(¢) is constant pulse
function with unit amplitude in the interval 0 < ¢ < 2x. Performing
the Galerkin test oo (1) and (3), one obtains the following equations:

- / Fo(2)E2(LL)dz — / Fom(2)E2(Muy) dz
= / Fa(2)E'(2)dz (6)

@

2w -
[ Pong,- 831 - B M ds = [ P(6)Hibds. (T)
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Fig. 4. RCS of 2 wavelength-long dipole loaded with s ferrite bead.

Substituting (4) and (5) into (6) and (7), the following set of N +1
equations can be obtained: '

N
Y LZun +Ing1ZmNs1 =V, m=1,2 N (@)

nxl

N
ZL-ZN“.. + IN1ZN41, N1 = V. (8b)

nx=]

Zmn is the usual mutual impedance between two sinusoidal dipoles
(1), and

Zom, N1 = jwpo(pr — 1)xc?2xbHG,
where b = a+c

o
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Fig. 6. RCS of farvite-bead-loaded dipole as a fonction of bead size

(a = 0.025)).

He is the magnetic field intensity arising from the electric carrent
source Fou(z), evalusted st the center of the ferrite ring. Note that
the reciprocity theorem has been employed for the second term
on the Jefi-hand side of (8) to obtain the expression for 2, N41.
Expressions for Zn 41, 80d Zn41, N1 8T given below:

ZN41,n = —2xbHg - (10)

and
Zns1, N4 = 2001 + 2 jopo (s = Daco/m), (1)
where 200 is the zeroth-order geperalized impedance for the circular
electric wire loop [2], and ne is the intrinsic impedance of free space.
‘The matrix equation (8) can be readily solved for the unknowns I,
and the far-zone scatiered field can be easily obtained. Note that the
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Fig. 7. RCS of bead-loaded dipole as a function of bead size (a = 0.05A).
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Fig. 8. Frequency dependesce of RCS seduction from a rod with a ferriee
bead with @ = 0.05), c = 0.01), snd ., = 60.

contribution to the scattered field from the ferrite ring is insignificant
and is ignored in the calculation. In the next section sumerical results
for the scatter fields arising from fervite-loaded thin wire will be
presented.

I1 NUMERICAL RESULTS AND DISCUSSIONS
- In this section we present aumerical results for the plane wave
scattering by a straight piece of thin wire. The ferrite ring is piaced
8t the ceater of the wire. The results are obtained for a mormally
incident plane wave with the incident electric field E* peralle! to
the wire. Fig. 2 presents the broadside radar cross section (RCS) of
2 0.46) long thin wire as a function of the permeability, u., for
the ferrite ring. It can be seen that as u.increases the RCS of the
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ferrite-ring-loaded thin wire is dramatically reduced.

results based oa thin wire with a lumped losd (X1 ) at the cemter
are also obtained. The results for the inductive load are shown in Fig.
3. It is scen that the inductive loading has a similar effect of RCS
reduction as that due to the ferrite ring. However, the ferrite bead is
inserted on the wire whereas the inductive load must be inserted in
series, making it necessary to cut the wire. Figs. 4 and S present the
RCS curves for a one-wavelength-long thin wire. It is inseresting to
observe that as the u, or X is increased, the RCS of the A-long
dipole approaches that of two )\ /2-long dipoles.

This frequency dependence of ferrites may prove to be useful It
mgy be possible to design the material so that it is effective at the
design frequency but not effective for frequencies much higher than
the design frequency.

The effect due to the cross section area of the ferrite ring on the
RCS of a thin wire is also investigated. The results for the case of
8 0.025 x 0.46) wire are shown in Fig. 6. Note that, in Fig. 6, as
the radar cross section area of the ferrite ring is decreased from a
radius of 1072\ to0 1072 the effect of the ferrite-ring on the RCS
of the loaded wire is gradually diminished. Fig. 7 gives the radar
cross section when the radius of the wire is increased from 0.025)

9 0.05\. Note that the effectivensss of the bead has improved with
this increase in radius (or for the faner dipole).

It might be assuomed that the RCS reduction imtroduced by the
presence of the ferrite bead would be frequency depeadent. As may
be seen in Fig. 8, this is a broadband phenomencn sad the RCS
reduction is maintained for about a 4:1 beadwidth. It should also be
possible to extend the bandwidth by use of multiple beads.

IV. SUMMARY AND DISCUSSION
‘This paper has preseated a coupled integral equation and method
of moments (MM) solution 10 the problem of scattering by a thin
conducting wire of circular cross section with ferrite loading. It has
been shown that the ferrite loading can be used to reduce the radar
cross section of loag thin objects at their resonant frequency.
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The electromagnetic diffraction of a plane wave (transverse electric case) by a two-part material
coated perfectly conducting ground plane and a material-costed perfectly conducting half plane is
studied using the Maliuzhinets method. Each of the coatings is assumed to be electrically thin so that
it can be replaced in the analysis by a generalized impedance boundary condition of 0(r), where 1 is
the corresponding coating thickness. To solve each of the boundary value problems compietely, one
needs to impose an additional constraint which is determined bere by matching an approximate
quasi-static solution with the corresponding Maliuzhinets solution in the common region of overlap.
This requires the asymptotic evaluation of the Maliuzhinets functions in various regions of the
spectral domain. Furthermore, several constants that appear in the analysis are exactly related 1o the
field and its derivatives evaluated at the edge or junction of the body under study. The backscattered
and bistatic echo widths of a partially coated perfectly conducting balf plane are computed with the
solutions developed here (including multiple interaction) and compared with an independent moment

method solution. The agreement between the two solutions is excellent.

1. INTRODUCTION

The generalized impedance boundary conditions
(GIBCs), which involve field derivatives of higher
order than the first, have frequently been used by
many authors to model thin material slabs or coated
metallic surfaces in electromagnetic (em) scattering
problems. The application of GIBCs provides more
accurate models for nonmetallic surfaces than the
traditional Leontovich boundary conditions. How-
ever, difficuities arise when GIBCs are used be-
cause they yield solutions which are neither unique
nor reciprocal even after the edge condition is
applied. Note that there are special cases where
solutions based on GIBCs can be found where no
unknown constants remain and without the need to
impose reciprocity. In several GIBC-based solu-
tions involving magnetic dielectric materials found
in the literature, the reciprocity condition is im-
pc 4 explicitly in the analysis and any remaining
unknown constants are set equal to zero [Rojas and
Pathak, 1989; Rojas and Chou, 1990; Volakis and
Senior, 1989). Bernard [1987] considers a conduct-
ing wedge covered with magnetic dielectric mate-
rial; however, his solution is not complete because

Copyright 1993 by the American Geophysical Union.
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some terms in his solution remain unsolved. In his
study of a coated half plane, Senior [1991] states
that when the GIBCs are used, reciprocity should
be explicitly imposed, and additional constraints
are required to ensure uniqueness. Although his
solution is still incomplete because it contains an
unknown constant, it correctly predicts that the
constant is related to the value of the field at the
edge. In the study by Rojas et al. [1991a], an
additional junction condition is developed for the
first time for a thin magnetic dielectric material
following a procedure introduced by Leppington
[1983], who modeled the field near the junction by a
quasi-static solution and then matched to the exter-
nal Wiener-Hopf solution in the region of overlap to
determine the additional constraint. As shown by
Rojas et al. [19914], the additional junction condi-
tion eliminates the need to explicitly impose reci-
procity in the analysis, and all the unknown con-
stants can be completely evaluated.

In this paper the Maliuzhinets method [Maliuzhi-
nets, 1959) is employed to solve two canonical
problems involving thin material-coated metallic
surfaces which are modeled by GIBCs of 0(r) [Wein-
stein, 1969; Rojas and Al-hekail, 1989; Rojas, 1988],
where 1 denotes the corresponding coating thick-
pess. Specifically, the first problem is the em dif-
fraction of a normally incident plane wave (trans-
verse electric TE, case) by the junction of a two-

281
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Fig. 1. Two-part material-coated PEC grouad plane geometry
with plane wave aormal incidence.

conducting (PEC) ground plane, whose geometry is
depicted in Figure 1. Note that a similar problem
has been solved by Rajas et al. [1991a) via the
Wiener-Hopf technique along with an approximate
quasi-static analysis. However, this two-part prob-
lem, which has not been analyzed by the Maliuzhi-
nets method, is again considered here to demon-
of the quasi-static approximation to obtain a unique
solution based on the Maliuzhinets method. Note
that the term uniqueness is used here to state the
fact that the solution does not contain any unknown
constants. The second problem considered here is
the em diffraction of a normally incident plane wave
(TE, case) by a thin dielectric/magnetic coated PEC
half plane illustrated in Figure 2, where the material
coatings on the top face {x < 0, y = 0*} and the
bottom face {x < 0, y = 07} are different. For this
half plane problem, the Maliuzhinets method seems
tobeabettermdumplerapproachtbanthe
Wiener-Hopf method because the latter requires
matrix factorization which is much more compli-
cated than the scalar factorization that one usually

u'=H}
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Fig. 2. memmwﬁm
wave normal incidence.
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Fig. 3. Geometry pertainiag to & partially costed PEC half
plase.

encounters. Again, a quasi-static solution is devel-
function expanded in the common region of overlap
to determine an additional condition, which in tum
ensures uniqueness for the Maliuzhinets-based so-
lution. As stated above, this last step requires the
asymptotic evaluation of the Maliuzhinets functions
in the common region of overlap. Furthermore, in
contrast t0 some papers found in the literature
based on the Maliuzhinets method, the analysis
presented here gives the exact relationship between
constants that appear in the analysis and the field
and its derivatives evaluated at the junction or edge
of the structure under study. This is a very impor-
tant result because it gives a physical interpretation
to the constants that appear in the analysis. Fur-
thermore, it makes it possible to compare the junc-
tion condition obtained by the present method and
the Wiener-Hopf technique [Rojas et al., 1991a]).
In section 2 the two-part problem depicted in
Figure 1 is solved with the aid of the Maliuzhinets
method after the GIBCs of 0(¢) are employed to
replace the grounded siab. It is shown that the
present solution based on the Maliuzhinets ap-
proach is identical to the one based on the Wiener-
Hopf technique presented by Rojas et al. [1991a]. It
is also shown that the same junction condition
obmnedbyko;asetal {19914] to ensure unique-
pess is anm obtained here, though a different
approach is used in this study. In section 3 a
uniform (geometrical) theory of diffraction (UTD)
solution is obtained for the coated half plane prob-
lem shown in Figure 2. To test the accuracy of the
solutions obtained in this study, the scattering from
apnﬂnﬂycouedPBCMphneushowanmm
3 is calculated in section 4 using the solutions of
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sections 2 and 3 (with multiple interaction includ-
ed), and it is compared and shown to be in good
agreement with an independent moment method
(MM) solution [Newman, 1986). Note that an e~/
time dependence is assumed and suppressed
throughout this paper.

2. TWO-PART GENERALIZED IMPEDANCE SURFACE

The two-part coated PEC plane shown in Figure
1 is equivalent to a two-part generalized impedance
surface whose faces {x >0,y = 0}and {x <0,y =
0} satisfy the GIBC of 0(7). Let (p, ¢, z) denote the
cylindrical coordinates with ¢ measured from the
+x axis. Also, let w(p, ¢) = H,(p, ¢) be the scalar
total field at an arbitrary field point (p, ¢) in the
upper half space 0 < ¢ < =. Then u satisfies the
GIBC of 0(2) at the surfaces ¢ = 0 and ¢ = was
follows:

1 @ 1 9
[——zziam——-+(l+bm)ﬂ(ﬁ $)=0 6=,

k% ap kp ¢
(lo)
where
ie,u
a2 =sin v, +siny, = ————, b

k(‘ru - l)‘l.!

Br,Ery = 1

—; 0

b2 = sin v, , sin vy, =
na

2 12
sin Vo, , -?:[(%) -le] . (1d)

In addition to the boundary condition (1a), ¥ must
also satisfy the scalar two-dimensional Helmholtz
equation and the radiation and edge conditions.

2.1. Formulation of Maliuzhinets spectral
Junction
For a plane wave normally incident to the z axis

at an angle ¢' measured from the +x-axis, the
incident field «' is given by

W, ) =exp(-ikpcos ($-4)), 0<4,4'<w
@

in which the magnitude of the incident field at the
origin is assumed to be unity. Following Maliuzhi-

nets approach, the total field ¥ can be expressed in
the form of Sommerfeld integral as follows:

ulp, 4)-—[ ctp(-&ncucl-f(¢+¢-—)
Qa)

where the spectral function § is the unknown to be
solved, and y is the so-called twofold Sommerfeld
contour [Maliuzhinets, 1956). Since the edge condi-
tion requires that ¥ be bounded at p = 0, the
asymptotic behavior of § as [Im o — = is given by

im S(a)=const ) (b)
i al-so.

Furthermore, because of the radiation condition
which requires that the scattered field u — &' be
bounded in the region ¢ — #7/2| < #/2 for p— =, the
function S(a) is regular in the strip [Re of = #2
except that it has a first-order pole at a = ¢' — w2
in that strip to ensure the presence of the incident
ficld given in (2).

Applying (3a) in (1a) yields the following integral
equations:

f(sina:tsin Ve, Xsin a £ sin v, )

'S(a + ;) exp (~ikp cos a) da = 0. (4a)

It follows from (3b) that the integrands in (4a)
excludmgtheexponenualtermhavetbeasymptonc
behavior in the order 0(e 21> o ) as [Im o —» . Thus
according to Maliuzhinets [1958], (4a) is trans-
formed into the following inhomogeneous func-
tional difference equations for S(a):

sin a(Ajy; + Ayy €08 a) = (sin @ + sin ve,)
«(sin a * sin v.m)S(a :;)—(ﬁn«::fm L)

+(sin a ¥ sin v;m)S(-a t;), “b)

where Ay, Ay, A3, and A, are constants. If all of
these constants vanish, (4b) would become two
homogeneous functional equations for S(a). Let
p(a) be a solution for these homogeneous functional
equations which is given by
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¥(a, v, )¥(-a, »))
ek TPy Ty S
Note that the functions ¥(Fa, —v.u) are put in the
denominator because Re »,, < 0 in contrast to
Re w,, > 0 as seen from (ld) (a detailed discussion
is pven by Bernard {1987]). It can be shown that the
function ¥(a, ») can be expressed as

Y(a, v) = $en(a+ x~v)dapla+v), (5D)

where ¢,.n(a) is a special case of the well-known
Maliuzhinets function ¢¢(a) for ® = w2. Note that
¥o(a) is an even function of a, and its properties are
summarized by Maliuzhinets [1959). One of these
properties is

dola +29) | ( 1)

m‘ﬂni a+? .

Applying (6a) with @ = =2 to (Sa), it is easily
shown that p(a) indeed satisfies the homogeneous
functional equations. It also follows from (6a) that

pla - =)
pla + =)

- sin v, Ncos a ~ sin ¥, V(cos a - sin ¥, Xcos a

(6a)

= (cos a + sin ¥, }(cos a + sin v, Ncos a

= 8in vy, Ncos a + sin ¥, Ncos a + sin vy, )} (6b)

Since the closest zeros and poles to the point a = 0
of the Maliuzhinets function ¢,»(a) are, a = 372
and a = =5u72, respectively [Maliuzhinets, 1959), it
follows from (5) that p(a) is free of poles and zeros
in the strip |Re a} = #/2. Thus the general solution
that satisfies (4b) can be expressed as

S(a) = p(a)r(a). (7a)

Substituting (7a) into (4b), combining the two equa-
tions of (4b), and applying the identity (6b) yields

7(a + %) - 7(a — w) = ~qla), Qb)

gla)=

[(A; — A, sin a)(cos a — sin v,)

Cos
pla - =)
+(cos a —sin ¥ ) + (A; + A, sin a)
+(cos a — sin v, )cos a — sin ¥,,)]
*[(cos a — sinv,, Ncos a ~ sin v,,)

+(cos a + sin v, Ncos a + sin v..)]"'. (7c)

A particular solution of (7b) is given by

) gla+w)
T @pta + 29 oa

In other words, a particular solution for (4b) is S,(a)
= pla)7,(a) which must also satisfy the edge con-
dition (3b); and this requires that

A; =A,. (8a)
S,(a) can then be written explicitly as

S.(a) = p(a)r,(a) = [Az(cos’a

+a,cosa+b;)+A(cos’a +a;cos a

+ ;)Y [2(a; ~ a;Xsin? a - cos? a,))

A sin a +bz-b, o

2sin? a - cos? a,) cos @ a;-a,f @b)
2 - azbl-albz

cos’ a, l+-———az—a| 2 (8¢c)

The most general solution for the homogeneous
functional equations is given by p(a)o(a), where
o(a) satisfies the following difference equations:

faz3)=o(-e25) o0

Hence the most general expression for S(a) that
satisfies (4b) is given by

S(a) = S,(a) + pla)o{a). (Sb)

It is easy to verify that any function f{sin a) can be
a soluuon of (9a). Thus, to reproduce the incident
field u' given in (2), o(a) may be of the form

= “n “

o) e~ Nematong) O
However, it is seen from (8b) that S,(a) has two
poles at a = x(#2 — a,), which violate the
condition that S(a) has only a simple pole at a = ¢’
— =72 and is otherwise regular in the strip [Re o s
n/2. Thus the second term p(a)o(a) of (9b) com-
bined with S,(a) must force the residues of S(a) to
zero at a = (w2 — ay) by adjusting the constants
Ay, Ay, and A;. , Pla) has two non-
physical poles at a = =(3m2 + v, ), which when ¢
is close to 0 or =, may be captured if the Sommer-
feld contour y is deformed into steepest descent
paths. Since the residues of these poles introduce

4
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nonphysical exponentially growing fields, they must
be suppressed by setting the residues of p(a)o(a) to
zero at a = (3m2 + v, ). Consequently, one
obtains the following expression for o(a):

1
p(¢’' — w/2)sin? a - cos? a,)

o(a) =

(sin @ + cos v, Ksin a - cos v,,)

) (cos ¢’ — cos v, Ncos ¢’ + cos v,,))

sin ¢'(cos? ¢’ ~ cos? )
sin a + cos ¢’

+C|. 0d)

where the constant C is added so that (3b) holds. At
this point, C as well as A; (i = 1, 2, 3) are still
unknown, and thus the total field 4 computed from
S(a) is not unique unless these constants can be
specified. Although A;, i = 1, 2, 3 need not be
known to obtain the solution of u for p » 0 because
the function S,(a) has neither residue nor steepest
descent path (SDP) contributions to ¥ when ¥y in
(3a) is deformed into steepest descent paths, they
are computed here because they are related to the
field behavior at p = 0. The conditions discussed
above which require the residues of S(a) be zero at
a = x(n2 ~ a,) can be used to obtain C in terins of
A;, but more information is needed before these
constants are specified in terms of known parame-
ters.
Before proceeding further, it is convenient to
rewrite the expression of S(a). Note that the Mali-
uzhinets function ¢g(a) has the following property
[Maliuzhinets, 1959):

+ w w v 2 7o
Yol 3 ¥eo a’;)' Ve E) 00"4-.7 (10a)
It follows from (10a) (with ® = #/2) and (5b) that

V(' ~ w2, —v, )¥(-¢'+ =2, ~v,)
¥(a, v, ¥ (—a, —v,,)

VYa, ~w -y, J¥(~a, ~w-v,)
TG - W, —w- v, V(¢ + W2, —w-v,)

(cos ¢’ — cos v, Ncos ¢’ +cos v,,)

(sin a + cos v, Xsin a - cos »,,) (108)

Incorporating (10b), (9d), (8b), and (Sa) into (9b)
yields

1 {A,dna

+
a-cos’a, 2 (eoul

b - b
S(-)-.h, lz"ln)
+Az(eon’ a+ajcosa+h)+A(cos’a+a;cosa+by)

Aa) - a3)

+

h(a) [sin ¢'(cos? ¢’ - cos? a,)
+Clt
! g sin a + cos ¢’
A "—;

ha) = hy(a)h(~a), hin(a) = ¥(a, ¥, J¥(a, ~

(11a)

- ¥ay). (115)

To show that the constants A, A;, and Ay are
related to the field ¥ and its derivatives at the
junction, a scheme similar to that of Maliuzhinets
[1956] can be followed, namely, one may write

1 s i
#(0, ¢) = lim EL. até-3

p—0

- s(-a +é- ;)] exp (~lkp cos a)da,  (12a)

where vy, is the upper loop of the contour 1.
Applying (11a) to (12a) and letting the horizontal
part of y; tend to infinity (that is, YVa € y;, Imna—
=), also noting that S(i°) = —S(—ix) [Maliuzhinets,
1958], one obtains

(0, ¢) = 2iS(i=) = —A,, 12b)

v 9G]

2(‘] - ‘z) “(‘, -:) . (lz")
2
Similarly,
u i — [ |s{a+e-2)-5[-a+
¥|,.0 ._,,2*‘17. até 2 até
- ;)](..& cos a) exp (~ikp cos a) da. (13a0)
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Letting the horizontal part of y, tend to infinity and
applying (4b) to (13a) with ¢ = 0 and ¢ = w,
respectively, leads to

2.2. Determination of the unique solution

As stated earlier, an approximate quasi-static
solution can be used to obtain the additional infor-
mation which is required for the determination of C
in (11a) and A; (i = 1, 2, 3). Since the geometry
shown in Figure 1 is the same as the even configu-
ration given by Rojas et al. [1991a), the quasi-static
field obtained by Rojas et al. [1991a] can be applied
here; namely,

ifl1
up,é=w)~A,~B [p+;(——

- -l—) In p]. tin<p<k, (14a)
a;

Note that the subscript g is used to denote a
quasi-static field. The spectral function S, corre-
sponding to ¥, can be obtained from the i mversnon
of the Sommerfeld integral (3a) for Re (—ik cos a) >
0 [Maliuzhinets, 1958], which is given by

w\ iksina (e
S,(a + -) = j ug(p, m) exp (ikp cos a) dp.
2 2 J,
(14d)
Evaluating (14b) with &, given in (14a) yields

s +'w sinaf A B[ 1 11
N*72) cora 2 2k |cose = \a;

"é) In (cos a)]]. 1<fcos al (k)™ (140)

where A’ is a constant resulting from the transform
of the term of In p. Noting that

uh a
—zf, Im(cosa)~Fia, Ima@0,
cos a
as [cos a|> 1, (14d)
(14¢) can be rewritten as

s.(ai-;) {(A'—-‘:'——& 1 gﬁ(_‘.

2k |cosa w \a

-‘—)]}. Ima 20, 1 €fcos a| < (ktyp)~).  (14e)
2

At this point, an additional condition is readily
obtained if one matches (14¢) with the asymptotic
form of S(a + =/2), where S(a) is defined in (11a),
wnthmthereponofovednpl<|eosa|<
(kty2)~"'. Applying (36) of the appendix to (11a)
thhabemcnphcedbya+si2.oneobtains

e o
el sy

a a
Ay +aA
J’.";,; .e, Ima=0. (150)
2(a; — a3) cos a

Comparing (15a) and (14¢), it is evident that they
can only be matched to each other if the coefficient
of the extra term of (cos a)~! vanishes; namely,

a1A2 +a3A; =0, (15b)
or
l au l au N 150)
a; p 528 a; 9 [34] ) (

Notethat(lSc)istheameuthejuncﬁoncondition
obtained by Rojas et al. [1991a). Applying (15b) and
(12¢) to (11a), and setting the residues of S(a) to
zero at a = (a2 —~ a,), one finally obtains the
constants C, A;, A, and A, as follows:

C = sin ¢'TM(a,) - cos ¢'),
» [

4
wle-T)
¢ "i')

A= Fapn asd

B S WP E U W 0 AN G e A Ey . A




fi-o) o)
o)
SR A1

-sin ¢'((a; — a)) sin a, + by - b,y{h(w - .;)

}e-n)odo3)

A unique solution for u(p, ¢) can now be determined
by evaluating the integral in (3a) with S(a) given in
(11a) and C and A, given in (15). Since the exponential
function in (3a), that is, exp (—ikp cos a), possesses
two isolated, simple saddle points at a = wand a =
- in the region [Re a] s =, the Sommerfeld integra-
tion contour y can be deformed into two steepest
descent paths SDP(+ ) passing through these saddle
points. Furthermore, the spectral function S(a + ¢ —
#2) in (3a) is analytic everywhere except that it has
several isolated simple poles. Therefore the total field
u(p, ¢) evaluated from (3a) consists of the integral
contribution from the integration paths SDP(+1|).
which gives rise to the diffracted field 4, and the
tesldueeonm'bunonsﬁ'omthepolesofS(a+ ¢— n2)
if they are captured in the deformation of ¥ into
SDP(= 7). The residues from the real poles give rise to
the incident field 4’ and reflected field 4", whereas the
nmduesﬁ'omthecomplexpoleseonm’butetothe
surface wave field #*™. In other words, the diffracted
field u? is given by

o, ¢ )-—f (a+¢-—)
SDP(v)

-exp(—ikpcosa)da+[ S(u+¢-:)
SDP(~#) 2

«exp (—ikp cos a) da].

M(a,)=cos a,

(15¢)

a))]

asf)

(16a)

By shifling the steepest descent paths SDP(#) and
SDP(—n) to a new path SDP(¢) with a saddle point
at ¢, where 0 < ¢ < %, (16a) can be rewritten as
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1
‘(Pt é)=—

pyr ¥(a, ¢)

)
- exp [ikp cos (a — ¢)) da,

$(a, o')-s(”;)-s( -12!)

, 1
(a 'M)[*m ")] sin a sin ¢’

e

cos a cos ¢’ + cos? a,
cos a + cos ¢’

(168)

- M(a ,)]. (16¢)
Note that the identity (10a) has been used to obtain
(16¢). 1t is clearly seen from (16¢) that the function
F(a, ¢') is symmetric in a and ¢’ as required by the
reciprocity property. Furthermore, it can be shown
from the definition of the Maliuzhinets function
¥an(a) [Maliuzhinets, 1959) that ¥(a, ¢') given in
(16¢) is exactly the same as the even symmetric
spectral function based on the Wiener-Hopf tech-
nique obtained by Rojas et al. [1991a). Likewise, it
can also be shown that the reflected and surface
wave fields obtained here are the same as the
corresponding fields given by Rojas et al. [1991a]).

3. GENERALIZED IMPEDANCE HALF PLANE

As indicated at the introduction, the half plane
problem has also been considered by Volakis and
Senior [1989] (based on Maliuzhinets method) for
different coatings on both faces of the half plane and
by Rojas and Chou [1990] (based on the Wiener-
Hopf method) for equal coatings on both faces of
the haif plane. In these two solutions, the reciproc-
ity condition is imposed in the analysis, and the
remaining unknown constant is set equal to zero. In
this section, the solution to the two-dimensional
half plane problem, whose geometry is depicted in
Figure 2, is obtained using the Maliuzhinets method
combined with the quasi-static analysis, and it is
rigorously shown that the remaining constant is not
equal to zero, except for special cases. With the
application of the GIBC of 0(r), the material-coated
half plane is equivalent to a generalized impedance
haif plane. Let &(p, ¢) = H,(p, ¢) be the total field
at an arbitrary field point (p, ¢) in the entire free
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space |¢| < . The field #Ap, ¢) satisfies the scalar
two-dimensional Helmholtz equation, the radiation
condition, the edge condition, and the GIBC of 0(r)
at the surfaces of the half plane ¢ = +« as follows:

1 9 19
‘*—z'a?iiam;;;*'(l‘*bm)ﬂp.é)'o. a”n

é=zw,

where the parameters a;; = sin v, + sin Vb, and
byn = sin v, sin vy, were defined in (1). As in the
two-part proglem discussed in the previous section,
a quasi-static approximation for the total field in the
neighborhood of the edge will be developed so that
an additional condition is obtained to yield a unique
solution for d(p, ¢).

3.1. Formulation of the Maliuzhinets spectral
Junction

For the half plane geometry excited by a normally
incident plane wave as depicted in Figure 2, the GO
(geometrical optics) incident field at a field point (p,
¢) with an incident angle ¢’ measured from the +x
axis is given by

@'(p, ¢) = exp [—ikp cos (¢ — ¢ IU(d — ¢’ + =)

~U¢-¢'-7) -w<od, ¢'<m, (18)

where U is the unit step function. Note that the
magnitude of the GO incident field at the edge is
assumed to be unity. Note also that &’ exists only in
the lit region, where |¢ — ¢'| = = Following
Maliuzhinets approach, & can be expressed as the
Sommerfeld integral:

|
Hp, ¢)= —f exp (—ikp cos a)S{a + ¢) da, (19a)
27i y

where vy is the twofold Sommerfeld contour. Be-
cause of the radiation condition, the spectral func-
tion $(a) is regular in the strip [Re of < wexcept that
it has a first-order pole at @ = ¢’ to produce the
incident field Z'. Furthermore, it follows from the
edge condition that

tim $(a) = const. (195)

malee

As in section 2, after applying the boundary condi-
tion in (17), (19a) becomes an integral equation which
can be transformed into the inhomogeneous func-
tional difference equations for S(a) as follows:

:'mc([uzi'ly.cosa)-(linc:l'nv..)(ﬁnc
z sin v, )S(a = w) ~ (sin a F sin v, Nsid @
F sin vy M(~a £ w), (20)

where A, A;, A,, and A, are constants. The
solution S(a) for (20) can be found following the
same procedure given in the previous section. Thus
the first step is to obtain a solution a) for the
homogeneous functional equations (equation (20)
with the constants 4;, i = 1, 2, 3, 4, set equal to
zero); namely,

¥, v, )¥(-a, v,)

= 3?" -vclﬁ(-u’ "V.,)’

Ha)

Qla)

kT 4
Y(a, v) = &,(a +-2—- v)&,(a + -5+ v). 21b)

Note that ¢ (a) is the well-known Maliuzhinets half
plane function [Maliuzhinets, 1959). It follows from
the identity (6a) (with @ = =) that

Ha —2n)
Ka +2n)

= (sin a - sin v, Xsin a - sin ¥, Xsin a

- sin v, Xsin a - sin ¥, V([(sin a + sin », )
+(sin a + sin v, )sin a + sin v, )sin «
+ sin »,,)). QIc)

Furthermore, since the closest zeros and poles to
the point a = 0 of the Maliuzhinets function ¢ .(a)
are a = *5u/2 and a = *7nf2, respectively [Mali-
uzhinets, 1959, f(a) is free of poles and zeros in the
strip |[Re a| s . Thus the most general solution that
satisfies (20) can be expressed as

S(a) = §,(a) + Ha)¥(a), (Ra)
where §,(a) is a particular solution of (20) given by
S.(a) = fa)F,(a} =[A,(sin? a@ — a; sin a + by)

— Ay(sin? a + g, sin a + b,)J[2a; + a;Xsin? @

e sin? a,)]
K; Cos a . b - bz
2(sin? a - sin? a,) ( a; + a;)' 225)
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ayb; + axb,
a +a
Note that A3 = A, due to the edge condition (195).

The function (a) satisfies the homogeneous differ-
ence equation

sin‘ a, = - (22¢)

Flaztwr)-(-axw)=0. .(23a)

Hence a(a) is a function of sin a/2. Since the first
term §,(a) in (22 a) has four poles at @ = *a, and
=(w - a,) in the strip [Re a| = m, which violate the
condition that $(a) is regular in the strip [Re o] s »
except at the simple pole a = ¢’, the second term
M a)a(a) in (22 a) must also have poles at a = *a,
and =(7 — a,) so that the sum of these two terms
yields zero residues at these unwanted poles by
adjusting the constants A;, i = 1, 2, 3. Furthermore,
K a) possesses two nonphysical poles at a = (27
+ v,,), Which may be captured and introduce
exponentially growing fields if the integration con-
tour yis deformed into steepest descent paths. Thus
taking into account the above conditions and noting
that (a) must have a form to reproduce the inci-
dent field &' given in (18), one obtains

1
P(¢')sin? a — sin? a,)

fgre)les-)

o(a) =

o a
+C,+Czsin5+c;sin’§-. (235)

Note that the terms involving C;, i = 1, 2, 3, are added
80 that (19b) is satisfied. Note also that (sin? a — sin?
a,) is itself a function of sin /2 because

- - a - a
sina -sina, = --4(smz 3 sin? ?°)

Axin? Z - cos? 22
(nn 3 cos 2). (23c)

It can be shown from (10a) (with @ = =) and (21b)
that

V@', v =4, -v,)
-‘i(a. —Vq, W(‘ﬁs - ’c,)

Y, ~x - v, )¥(~a, -7 -v,)
-m'- -% = V.,)-QT‘"- - - V.’)

cfmgfeson

2 2 2 2

. @ . Ve, . @ . Ve,
sny e \ueg TRy
Incorporating (24a), (23b), (225), and (21a) into
(22 a) yields

(24a)

- 1 :360‘0 bl—bz
S(a) = — 3 —3 sina +
sin? a - sin‘ a, 2 a, +a;
+x.(sin’a-a,sina+b,)-zz(sin’a+a.sina+b.)
2a; + a3)
lcos—'(sinzé'-sinza )
+ Ma)j2 2 i +C +Cy s 2
¢ o & )
i R
a
+G ﬁnz; , (24db)
where
K(a) = Ky(a)hy(~a), Rin(a)
= ¥Y(a, v.mﬁ(a, —-w =) (24¢)

_As in section 2, it can be shown that 4, A, and
Aj are related to the field 4 and its derivatives at the
edge as follows:

%0, ¢) = 2i8(ix) = 4;, (250)
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A-A GP%QT

2(a, +ay) 16k(¢") (258)
3, -
;;(P, ¢ =27),u0=—ikA)p. 25¢)

3.2. Quasi-Siatic analysis

As in the two-part problem discussed in section 2,
additional information is also required for the half
plane problem before a unique solution for & can be
obtained. The new piece of information can be
found by matching the result of the analysis above
with the corresponding quasi-static solution which
is approximated in the neighborhood of the edge of
the coated half plane. Following the procedure
given by Rojas et al. [1991a) and Leppington [1983],
the quasi-static total field 7, valid in the region ¢,
<« p < k™! for the present half plane problem may
be expressed as

i, =&, +B,8, (26a)

S~x+0Inp, phip—w, (26b)

where A,, B,, and 0 are constants. As in the
quasi-static analysis by Rojas et al. [19914], the
matching constants fl'q and Eq are of no concern
here, and the key step is to determine J which can
be accomplished by using the integral form of
Laplace’s equation, namely,

aa,
§ Vi i dl=¢p — dl=0, (26¢)
L Lo

where 7’ is the outer normal of a closed contour L.
Applying (26 ¢) inside material 1 (coating on the top
face of the PEC half plane) with the contor of
integration L, as illustrated in Figure 4, one obtains

(=xe1) aﬂq
I —dl, (6d)
on

00
interface

d] -Eqﬂ -0, 4] =

Xlty =

where §, is an integral along the free space-material
1 boundary, and the integral along the conducting
half plane is exactly zero as a result of the boundary
condition satisfied by &, on a PEC surface. Inte-
grating (26¢) along a similar contour inside material
coating 2, where L, is depicted in Figure 4, vields

Ls

Ls
Fig. 4. Integration contours for the determination of
(plty 3 — =).
. (oo ad,
G-By;=0, §y= lim —dl, (26e)
(~%e.—12) O
X/t ~w ¥ imerface

where g, is the integral along the free space-
material 2 boundary. Likewise, integrating (26¢)
along the closed contour L, in free space and applying
the boundary condition which requires that the tan-
gential fields be continuous at the free space-material
interfaces, one obtains (as x,/t;; —> ®)

———‘—*E.{Zﬂ’g"’('l +4)]=0. Q6f)

Incorporating (26d) and (26¢) into (26f) yields a
simple expression for Q as

Q i 1 1
2wk \a, + a)’ 60)
where a; and a, were defined in (1b). With J being

determined, the asymptotic behavior of 4, as p/t;
—» o is specified, and no further analysis is required.

3.3. Determination of the unique solution

Following the same procedure used in section 2,
the approximate expression for the spectral func-
tion §,(a = ) corresponding to 7, is given by

M EE BN B I B SE E am .
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2 2kjcosa 2w

S.(ﬂt .')-.-o-{ (x'_ﬁ)_.i_q -‘_:.‘:(l

1
+a—)]].lm a0, | <cos a| < (kt)p) ),
2
27a)

where A’ is a constant resulting from the transform
of the term In p. Applying (38) of the appendix to
(24b) with a replaced by a + =, one obtains the
asymptotic form for S(a + #) in the region 1 <«
[cos a| < (kt,5) ! as follows:

Ay A -

Sa+m)~=i—+ + const 14
(@t *'2 2(a; + a3) const (a;az) cos @
- ia (1 + 1 _. a|Zz +a2A', + Q)
F— et || ...

27 \ay ay 'Z(a,+a2)cosa ’
Ima0.

To match (27b) with (27a), it is necessary that the
coefficient of the extra term of (cos a)~! be zero;
that is,

- 1 9i7
a1, +aA; =0, or — —
a) dp

1 au
= (.
0-0

+
p=0 ay ap
é==
(27¢)

All the unknown constants in (24b) can now be
completely specified from the conditions (27¢) and
(25b) together with the requirement that the resi-
dues of $(a) be zero at the unwanted poles a = +a,
and *=(m — a,) as discussed earlier. After some
manipulation with the aid of the Maliuzhinets func-
tions’ properties given in (6a) and (10a), one obtains

¢l ’
C) = sin ¢’ cos? ?-cos-t—

k(e,)G(a,) sin? ? + k(7w — a,)G(7 - a,) cos? ?2—0

h(a,)H(a,) + hlm — a,) A(7 - a,)
(28q)

Cz-cos? cos ¢’

. ka,)Aa,) = A - a,)A(w - a,)
08 o Hao)Ala,) + hix - a ) Alx - a,)|

(28b)
Cy = —sin ¢’
¢' Rla,)Gla,) + h(m — a,)G(r - a,) )
7 Kao)H(a,) + Aiw — a ) A(w - a,) (8e
. o
Gy *.(3)
Ainp=%Fain ) (28d)
_ 2a, + 02) [V ?
3T @ +ay) sina, + by - by
kla )h(m — a,)|Gla,) + 2A(a,) cos J
) E(a,,)n(a,) py ey e e G
where
1
Ha)= —37m X1 cos a+(1+X;)
a1
-m§+ﬁ(x, + X3), (29a)
- 1 2 1 X a
G(a) -zcos a+2m lcosasm-i
+23(x; + X;3) sin;-+ 14X, +2X,; (296)

Xy=§a, +&b, — €, —€b,y  Xa=E£a,6p,€0,6p,,
(29¢)
X;= €a,6p, + £a, 60, — (€a, + fb.)(fa, + fb,)v

(29d)

Xy = €a, 6o, (€., + fb,) = €q, 6>, (fa, + fb,)- (29¢)

= :+"+"n., = hid Vbu
f,u cos " 3 . “’u cos :-—2—

(29)
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‘With the constants C; and A; determined above, a
unique solution for the total field #p, ¢) is com-
pletely specified by evaluating the Sommerfeld in-

tegral (19q).

3.4. Asymplotic analysis

By deforming the contour y into two steepest
descent paths SDP(m) and SDP(—m), the total field
@(p, ¢) evaluated from the integral (19a) is given by

ap, ¢) = i(p, ¢) + d'(p, ¢) + E™(p. ¢)

+ip, ¢), (30)

where @ and @" are the GO incident and reflected
fields, respectively, contributed by the residues
from the real poles of the integrand in (19a); @™ is
the surface wave field contributed by the residues
from the complex poles, and @ is the diffracted
field which is the integral contribution from the
integration paths SDP(z ).

As can be seen from the expresion (24b), there is
a simple real pole from S(e + ¢) at a = ¢' — ¢
which is located within the strip [Re o] = 7 if 1¢' =
¢| = w. The residue contribution from this pole
clearly produces the incident field i’ defined in (18).
In addition, S(a + @) has two other real poles at
a = *2m— (¢ + ¢') which may also be captured in
the deformation of the contour yinto SDP(x ). The
residue contribution from these two poles intro-
duces the reflected field @', which is given by

@, ¢)=[Ri(®)U(S + & — m)+ Ry(—¢’)
cU(—-¢ — &' — m)] exp {~ikp cos (¢ + &")},

where the reflection coefficients R; and R, are
defined.as

~nr<é, P <m

(l1a)

(sin ¢’ —sin v, , )sin ¢’ — sin vp,,)

RI.Z(¢ )= (Siﬂ ¢l + sin v‘u)(Siﬂ ¢' + sin vbl.l)'

(31b)

As stated earlier in the two-part problem, the
steepest descent paths SDP( ) may be shiftedtoa
new path SDP(«?] by changing variables, and the

diffracted field 49 is then given by
1
ap, &) == F(a, ¢)
27 Jppie)
- exp likp cos (@ — ¢)) da, (32a)
$(a, ') = Sla + v) - Sla — =). (32b)
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Employing the identity (10a) together with some
trigonometric relations in (32 b), and after a tedious
work of simplification, yields

16h(a)h(¢’)
Pla, ¢

cos a + cos ¢’

Fa, ¢)=

a ¢’
coszcos 3

+ ﬂ(ao)]; 32¢)
in which

1
Pla, ¢')=1+x,+zx.+§cosa cos ¢'

X| . ! , e a
+~2-,72 cosasnn?+cos¢ sm; +2(1

L a ¢ 2 L a @&
+Xz)sm-2-sm—2-—-2-ﬁ(x,+X3) sm;+sm? ,
(32d)

Rla,)N(a,) + K = a ) N(m = a,)

e = R —aAm ey O
_ 1 . a 1 . a
N(a)=§(a, + a3) sm;cosa«r-z-(xl sm;

1 1
- 2—‘,—2 cos a)(xl + X3) +-2'?EX|(1 + X7+ 2X,),

32f)

where X;,i=1,2,3, 4, were defined in (29c)~(29f).
The function F(a, ¢’) exhibits the reciprocity prop-
erty as shown by the symmetry inaand ¢ Itis
noted that (32¢) has a similar form as the result
developed by Senior [1991), except that (32¢) is
completely specified while Senior’s solution still has
an unknown constant to be determined by an addi-
tional constraint. Furthermore, in contrast 10 the
analysis by Senior (1991], where the reciprocity con-
dition is explicitly imposed in the analysis, the present
analysis did not enforce reciprocity a priori, yet it
yielded a unique solution which automatically satis-
fies reciprocity. Keeping only the leading term of
order (kp)~'2, the asymptotic evaluation of (320)
recovers the high-frequency edge diffracted field,
namely
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Fig. 5. UTD versus MM results for the geometry shown in
Figure 3.

et
e, )~ Db, ¢'; va,» ¥s,,)s (33a)
Ve
-n<é,¢'<m,

with the uniform diffraction coefficient D given by

inl4

D(¢o, é'; Vo, vbm) -~ _J'z-—; {§(¢0 ¢')
w

& 1-F(=2kps}H
F} = )+ 33b,
+’_2‘, 27, .( )
a-¢

). i=1,2,3,4, (330)

fi'sin(

ay=w-¢', ar=w+e', E;=¢r+|¢5|.

ay=-w-v,, h=-1 (33d)
fi=R(¢'), O0sd'<w Gl
=R (~-¢'), -w<¢'<0

()

1n 1/w
V(vp,, vs,,) sec 3 (-;4- v,m)

fau= 2 4h(Vhy (—w - v.w)i’(w + v, =)
¢ o Piz{z +v,,), ¢) a
o8 3 8 (1) -t M)
33)

Note that 7;, i = 1, 2, 3, 4, are the residues of the
function ¥(a, ¢') at the corresponding poles &;,
except when —7 < ¢’ < 0 the residue 7, is evalu-
ated at a = —7w — ¢' instead of &,. Also,the
function F(x) present in the residue terms of (33b) is
the well-known transition function [Kouyoumjian
and Pathak, 1974). Finally, the surface wave field
@™ is given by

@™ (p, ¢) = Fpu, exp [—ikp cos (v, — H)JU(S - J:,)

+ Fyu, exp [~ikp cos (v, + $)IU(S,, — ),  (34a)

é, = :{w + Re (v,,) — arccos

1
cosh (Im », )]];
(34b)

and 7y, = 73, Fy,, = —F4. Note that 7,  are the
residues of S(a + ¢) at the surface wave poles a =
22w+ »,) - ¢

4. NUMERICAL RESULTS

As stated earlier, the solution for the two-part
problem developed in section 2 based on Maliuzhi-
nets method is identical to the known result given
by Rojas et al. [1991a] based on the Wiener-Hopf
technique. The accuracy of that solution has been
verified [Rojas et al., 1991a, b]. Thus it remains to
illustrate the UTD solution developed in section 3
for the material-coated PEC half plane excited by a
normally incident plane wave of TE, polarization.
Here a few far zone scatter patterns for the partially
coated half plane geometry depicted in Figure 3 are
presented and compared with a corresponding in-




8
+

Echo Width/) (dB)
)

F-i205° t
de=1A  t=002A ! .
-0} |6 =3+i03 pomprior ] -} ]
o bottos coating H

-0 i
0 [ %0 30

) ] 0
¢ (degree)
(s) Bistatic echo width.
j !

.
]
< 5 5
I ; f
= : 3 :
o .-w} =9 SRR T RS S _
£ d=fd  4,=00ZA i
a €n3+103  Mrm29403 i
~40 F{ No bottom coatin —1
T N
i : N
-50 e b3
0 60 20 ® 20 300 360
¢ (degree)
(b) Backscatter echo width.
Fig. 6. UTD versus MM results for the geometry shown in
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dependent MM/Green'’s function solution given by
Newman [1986]. The results based on UTD are
computed with all multiply diffracted and surface
wave field components up to third order included.
Note that the procedure used to obtain these mul-
tiply diffracted and surface wave fields is based on
the spectrally extended ray method developed by
Tiberio and Kouyoumjian [1979, 1982, 1984], which
has been applied to a resistive strip [Herman and
Volakis, 1987, and it is described in detail by Rojas
and Chou [1990) and Rojas et al. [1991b], where
some multiple diffraction mechanisms not consid-
ered by previous authors are discussed. The expres-
sions for the multiply diffracted fields of the par-
tially coated half plane can be found in the work by
Ly [1992]. It is shown in Figures S and 6 that the
UTD solution agrees very well with the MM result
for both bistatic and backscatter patterns. The
results based only on single edge diffraction are also
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included in Figure § to illustrate the importance of
the multiply diffracted fields.

To further examine the usefulness of the UTD
solution for small strip widths d, and d,, the UTD
based bistatic and backscatter echo widths are
compared with the MM in Figure 7 where d, = d, =
0.1A with other parameters keeping the initial val-
ues. It is evident from Figure 7 that for the chosen
material parameters, the UTD results are very
accurate even for such small strip widths by includ-
ing up to third-order multiple diffraction. As men-
tioned earlier, the boundary conditions used to
develop the UTD solution are valid only for thin
coatings. Thus in Figure B the bistatic and backscat-
ter echo widths are calculated for not very thin
coatings; namely, f; = 1 = 0.05A to show the
limitation of the GIBCs of 0(r). Note that with the
characteristics of the material used here, 0.05A
corresponds to 0.12A,, where A, is the wavelength
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Fig. 7. UTD versus MM results for the geometry shown in
Figure 3 with d; = dy = 0.1A.
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inside the material. Although the GIBCs of 0(r) are
not very accurate for these values of ¢; and 15, it
seems that the agreement of the UTD solution with
the MM data in Figure 8 is still reasonable.

5. CONCLUSIONS

The Maliuzhinets method is employed in this
paper to analyze two diffraction problems involving
thin material-coated metallic surfaces. Each of the
electrically thin material coatings is modeled by a
GIBC of 0(7), where  denotes the thickness of the
corresponding material layer. The application of
GIBCs of 0(r) (for magnetic dielectric materials)
which involve second-order derivatives of the fields
creates difficulties because it yields solutions which
are neither unique nor reciprocal even after the
edge condition has been applied. This difficulty is
solved here by imposing a junction condition, some-
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Fig. 8. UTD versus MM results for the geometry shown in
Figure 3 with nh == 0.05A.

times referred to as a contact condition, in addition
to the boundary and radiation conditions as well as
the edge condition. The junction condition is deve)-
oped by matching a quasi-static solution with the
corresponding Maliuzhinets solution in their com-
mon region of overlap near the edge (or junction).
The final solutions thus obtained do not contain any
unknown constants and automatically satisfy the
reciprocity condition.

It is noted that expressions for the constants A;
and 4; (i = 1, 2, 3), which appear in sections 2 and
3, respectively, are developed here and are also
expressed in terms of the field and its derivatives
evaluated at the junction or edge of the scatterer.
This is an important step because it gives a physical
interpretation to these constants and allows the
comparison of one of the junction conditions devel-
oped here to the one obtained by means of the
Wiener-Hopf technique [Rojas et al., 1991a].

Finally, the accuracy of the solutions developed
here is assessed by considering the bistatic and
backscattered echo width of a partially coated half
plane. By including multiple interactions up to third
order, the UTD solutions provide results which are
in good agreement with corresponding moment
method results.

APPENDIX

Approximate expressions valid in the region 1 «
lcos o] < (kt;5) ! are obtained for the functions
h(a + 7/2) and k(a + =) defined in (115) and (24¢),
respectively. Since a,, which is defined in (1b), is
proportional to (k1;;)”!, the condition [cos of <
la;z| also implies |cos a] < (k1;,) ).

Approximation for h(a + #2) = hy(a + =)
h(-a - n2)

Since the Maliuzhinets function ¢.n(a) satisfies
the identity (10q), it can be shown that

(e 3o 3) =3 o)

(sin? ina+b ! Al
sin‘ a - a; sin a + b,) 2&-/12

a a
- a; sin ) cos 3 laz]—+ . (35a)
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{e=3)-lom ()

In the strip of interest where [Re (a + #/2)| = », the
function hy(a + w2) hasa zeroat a = v, = 0 as
la;] = o. Likewise, hy(—a — %/2) possesses a zero
ata=—u— v, — ~was |a;| = . Hence it follows
from (35a) that

ST A

2
fcos a| «|a,|.

The approximation given above can be improved by
adding a second term to (35b), namely,

a

” i w3
R R P
3

-[1 + Hi(a)], 35¢)

where [H; (a)) < 1. Substituting (35¢) into (35a)
and neglecting the small product H (a)H; ()
leads to

sinfa+b, 1

H}(a) + H; (@) ~ ————" ——
a sin a

fcos a| «|a,|.
35d)
By decomposing the function (1/sin a) as

1 -a Tt+a

W e o —— (35e)
sSin a ®SIh a wsSina

and noting that the approximation of hy(a + =f2)
must be regular in the strip [Re (a + #/2)| < =, one
recognizes

H(a)~ (r+ a)(sin.I a+ bz)_. a sin a' asf)
®a; N a wa;

1<cos af.
Substituting (35f) into (35¢) leads to

e +3) ~5m [¢(§)}

.,i,.s[,-m"

2 wa;

Similarly,

]v |<|005 d'<‘dz|. (359)

a a sin
rcos— |1+
2[ wa;

"]. 1<kcos al<la,.  (35h)

Multiplying (35h)-(35g) and retaining the first two
terms yields

e 3) -2 ol 22
fralhemncer

Approximation for hia + %) = Ry(a + hy(-a -
)

The Maliuzhinets function ¢,(a) has the follow-
ing property [Maliuzhinets, 1959):

*.(d + ')*'(G - ') - [*.(')]“m“')- (37a)
Hence it can be shown from (37a) that

hia + mhy(-a - )= [&,(r)]'hz(a + -;—) (37b)

Substituting into (37b) the approximation for hy(a +
#/2) given in (35¢) and (35f) as |a,| — =, one obtains

Fya + why(~a - 7) ~;:—,,- (¥ (m]

o=

[ (w + a)(sin? a + bz)J
hd l - - » zl—b”,
wa; sin a

(37¢)

Thus, a two-term approximation for Ay(—a — ) in
the region 1 < |cos af < |a,| can be found following
a similar procedure as discussed in the previous
section, namely,

2
h(~a—a)~ (—2)"‘“.(1')]‘[*-1:(‘;)] ay

al a sin o .
Raad 2wa; | 37d)
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Muitiplying (37d) to a similar approximation of A,(a
+ ) yields

i w\]¢
hla + =)~ Y] [*.(ﬂ]’[*m(;)] (a)a3)"

e B

1 <|cos a| & (k1)) 7",
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I. INTRODUCTION

The estimation of signal parameters via rotational
invariance techniques (ESPRIT) algorithm of Roy,
Paulraj and Kailath (1, 2] uses signal subspace methods
to estimate the arrival angles of signals with an array.
The ESPRIT algorithm has the distinct advantage
over the multiple signal classification (MUSIC)
algorithm [3] that it does not require a search over
parameter space. When the MUSIC algorithm is
used to estimate arrival angles, one must search over
the set of all possible arrival angles to obtain the
estimates. Although such a search is not difficult in
one dimeasion, it quickly becomes prohibitive as the
number of dimensions increases. Angle estimation
prodlems involving electromagnetic signals often
require a scarch over two spatial angles. Moreover,
because electromagnetic signals usually arrive with
unknown polarizations, two more secarch dimensions
may be needed for each signal to estimate the signal
polarizations. The ESPRIT algorithm avoids the
problem of a search entirely and is thus preferable to
the MUSIC algorithm.

In an earlier paper {4), the authors showed how the
ESPRIT algorithm can be used with a linear array of
cross-polarized dipoles to estimate signal polarizations
and arrival angles in one angular dimension. Also,
for problems where the signal polarization is not of
interest, a related paper [5] shows how to incorporate
unknown signal polarization in the ESPRIT algorithm
so that signal arrival angles can be estimated in a way
that works regardless of the signal polarizations.

In [4, 5), it was assumed that the incoming signals
whose angles and polarizations are to be estimated are
uncorrelated, or at most partially correlated. However,
the performance of these methods degrades rapidly as
the incident signals become highly correlated. They fail
to work properly when the signals are coherent (ic.,
perfectly correlated).

The purpose of this work is to show how the
ESPRIT algorithm can be combined with spatial
smoothing techniques [6-10] and used with a uniform
linear array of crossed dipoles to estimate signal
directions and polarizations for coherent signals. We
present one method of spatial smoothing that can
be used when it is necessary to estimate both the
arrival angles and the polarizations of signals. We also
present two additional methods that can be used when
only the signal arrival angles are of interest, not the
polarizations, but it is still necessary that the estimator
work properly with arbitrarily polarized signals.

In Section II, we define the array that is used
and the signal parameters. In Section III, we
show how forward-only spatial smoothing 7, 8}
can be combined with ESPRIT and used with a
polarization-sensitive array to estimate both signal
directions and polarizations for coherent signals. In
Section IV, we describe an alternative procedure
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Fig. 1. Uniform lincar array of cromed dipoles.

based on [5] that may be used with both forward-oaly '
(FO) and forward/backward [9, 10] spatial smoothing
to estimate signal directions only. In Section V, we
present some typical examples and compare the
performance of the different techniques. Finally,
Section VI contains our conclusions.

l. PROBLEM FORMULATION

Consider a 2L-clement array consisting of L pairs
of crossed dipoles, as shown in Fig. 1. The Ith dipole
pair, [ = 1,2,..., L, has its center on the y axis at
y = (I ~ 1)4. The distance § between two adjacent
dipole pairs is a half wavelength. The signal from each
dipole is processed separately. For the /th dipole pair,
let x;(¢) be the signal received on the x axis dipole and
yi(t) the signal received on the y axis dipole.

Suppose K (with K < L) narrowband signals
impinge on the array from angular directions {6, 0<
k < K} in the yz plane, where @ denotes the standard
polar angle in the yz plane, as shown in Fig. 1. It is
assumced that each signal has an arbitrary elliptical
electromagnetic polarization [11).

To specify signal polarization, we use the following
definitions. An incoming transverse electromagnetic
(TEM) wave propagating into the array has an electric
field given by

E=—FE,e, + E¢ey 1)

where e,, ¢, and e, are unit vectors in the x, 8, and
r directions, respectively, in Fig. 1. We consider the
polarization ellipse produced by E, and E,. Given this
cllipse, we define a and J to be the ellipticity and the
orientation angles, respectively (see [4]). We define §
to be in the range 0 < § < 7, and a is always in the
range ~7/4< a < r/4. See Fig. 2.

For a given o and S, E, and E, are given by (aside
from a common phase factor) [4]

E, = EcosY @
Ey = Esinye/ @)

where v describes the relative values of |E,| and |Ey|
and 7 is the phase by which the § component leads the
x component. 7 is always in the range 0< v < /2,
and 7 is in the range —x < 1) < x. Either pair of angies

Fig. 2 Polarizstion ellipse.

(a, ) or (7,7) uniquely define the polarization state of
a wvave. We can compute 7y and 1) from a and § and a
and S from v and 7 [12, 4].

An arbitrary plane wave coming into the array
is characterized by three angular parameters and
an amplitude. The kth signal k = 1,2,... K, is
characterized by its arrival angle 6,, its polarization
ellipticity angle a, and orientation angle Sy, and its
amplitude E; (i.c., Ey is the value of E in (2) and (3)
for the kth signal). We say the kth signal is defined by
(oktak’pltsﬁ)'

We assume each dipole in the array is a short
dipole, so the output voitages of the x and y axis
dipoles are proportional to the x and y compoaents,
respectively, of the electric field. An incoming signal
with components E, and E, has x,y,z components:

E=-E.e. + Eoey
= (~E)e, + (Escosd)e, — (Epsinfle,  (4)
= E[(~cos?)e, + (siny cosbe)e,
— (sinysinfe/M)e,] ©)

where e,, ¢,, and e, are unit vectors in the x, y and
z directions, respectively. We define the space phase

factor . ]
q= e)(Zl“/l)_' (6)

where ) is the wavelength of the signal. Including the

time and space phase factors in (5), we find that an
incoming signal characterized by (6,a, §,E) produces
a signal vector in the crossed dipole pair centered at
y = (I - 1)0 as follows:

0= [H0] =uso? ™

®

and ]
5(t) = Ee/'*9) ®

with w the frequency of the signal and ¢ the carrier

phase of the signal at the coordinate origin at ¢ = 0.
We assume that K such signals, specified by 6,

k =12,...,K, are incident on the array. In addition

we assume a thermal noise voltage vector my(?) is
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present on each signal vector x;(2). The m;(t) are
assumed to be zero mean, complex Gaussian processes
statistically independent of each other with covariance
021, where 1 denotes the identity matrix.

Under these assumptions, the total signal vector
received by the crossed dipole pair centered at y =
(! - 1)6 is given by

I=12,...,L
(10)

where u; and g, are given by (8) and (6), respectively,
with subscript k added to cach angular quantity, and
& (?) is given by (9) with subscript k added to the
amplitude and carrier phase.

The carrier phase angle ¢ is assumed to be a
random variable uniformly distributed on [0,2x). The
other ¥, for £ = 2,3,...,K, are also random variables
but it is assumed that each of these differs from ¢
by a fixed amount. Thus, the ¥, are all rigidly tied to
one another, and the incident signals are coherent (ie.,
perfectly correlated). In this case, each signal s;(¢) can
be written as a scaled replica of some signal so(¢) for
which E{|so(t)]?} = 1, ie,,

sk (t) = geSo(2),

where g; is a real constant, and g3,83,...
complex constants.

Let 2(7), s(t), and n(f) be column vectors
containing the received signals, incident signals, and
noise, respectively, ie.,

X
() =Y wng ' +n(),

k=]

k=12,..,K (11)

»8Kk are

with 2L x 1 columns
{9
WG
= | (15)
mgl!

The columns a; arc assumed lincarly independent.
They define a K-dimensional signal subspace in a
2L-dimensional space.

By assuming the columns in A are lincarly
independent, we are excluding from coasideration
degencerate cases, such as when a signal causes zero
output on both the x and y axis dipoles at the same
time.

We assume that the element signals are sampled at
N distinct times #,, n = 1,2,..., N. The random noise
vectors n(t,) at different sample times are assumed
independent of each other. The problem of interest
is to estimate the 6, (and possibly the a,, ;) for k =
1,2,...,K from the measurements z(t,), n = 1,2,...,N.

In Section 111, we consider how to estimate all
three parameters 6;, a;, and 5, from the 2(7,). In
Section IV we consider what can be done if we need
to estimate only the 6,.

lil. ESTIMATING BOTH DIRECTION AND
POLARIZATION FOR COHERENT SIGNALS

Consider the array covariance matrix of 2(r) which
has the form

R = E{2(1)2(1)} =Ro + 0’1 (16)
r21(1) 7
() where R, = AR,AH 17
=] . |, = a”n
: with (-)H denotmilthe complex conjugate transpase
L2.1) and R, = E{s(1)s"(s)} represcnting the source
covariance matrix.
- 51(2) In general, if the signals s,(z),...,5x(7) are
2(t) uncorrelated, R, is diagonal. If the signals are partially
8(t) = (12) correlated, R, is nondiagonal but nonsingular. For
I the case considered here, the signals are completely
correlated, so R, is nondiagonal and singular.
-5k (6). As long as the 5, (7) are not completely correlated,
N - the eigenvectors of Ry (or R) that correspond to the
m() K largest eigenvalues of Ry (or R) span the same
n2(7) signal subspace as the column vectors in A [3). This
n(t) = fact is used in the original ESPRIT algorithm (1, 2]
for estimating signal direction and in [4] for estimating
Lo (1) both direction and polarization.
. . When the incident signals are coherent, however,
The received signal vector has the form using E{I-'o(t)lz} = 1 and (11) yiclds
2(r) = As(1) +n(7) (13) R, = gg! 18)
where A is a 2L x K matrix i where g is a K x 1 column vector
A=[a 22 .. a] (14) t=ln & gx)’ 19)
708 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 29, NO. 3 JULY 1993




e |
t——-‘—-—-o
"

**..o ** ------ **

where (-)T denotes the transpose. For this case,
the matrix R, is of rank 1 and the signal subspace
based approach will not work. T use signal subspace
methods with coherent signals, the signals must first be
“decorrelated”. .
One method of overcoming the singularity of
R, for coherent signals is the FO spatial smoothing
technique of Shan, Wax, and Kailath [7, 8]. The idea of
this technique is to divide a total array of L eclements
into Lo overlapping subarrays, as shown in Fig. 3. Each
subarray then has L, = L — Lg + 1 elements and we
assume that L, > K. As shown in [7, 8), averaging
the covariance matrices associated with the subarrays
restores the rank of R, and makes it possible to use
signal subspace methods.

The FO method can be applied here. Let E (1)
denote the column vector received from the Ith
subarray, ic.,

O =60 Fa® - dpaOF
1<i<Le ()

The covariance matrix of the /th subarray is [8]

R/ = E{z] (0 )1}
= AS IR, (8, HAR + 021 3}
where
%, = diag{q1,2,---.9x} @)
and where A is now the matrix in (14) and (15) with L
replaced by L,.

We define the FO spatially smoothed array
cavariance matrix R/ to be the average of the matrices

R/, ic,

sz-l-f:k,’. 23)
Lol-l
The matrix R/ can be written as
R/ =R +0% 24)
where
R{ = AR/A¥ @)

with R/ denoting the FO spatially smoothed source
covariance matrix

By replacing R, with gg*, (26) can be written

f -l
R L°°°“ @)
where
C=[g &4 sl-lg =GR, ()
with
G = diag{g1,82---.8x} @)
1 1 1
- qQ @2 - 4
AL, = . . . . (30)
glmt gt L. gl

Note that as long as the signals arrive from distinct
directions, the Vandermonde matrix A, is nonsingular.
If in addition Lo > K, then C is noasingular so the
rank of R/ is K.

A second potential method for overcoming
the singularity of R, for cohcrent signals is the
forward/backward spatial smoothing technique of
{9, 10]. The idea of this technique is to average
the covariances matrices associated with both
the subarrays shown in Fig. 3 and their complex
conjugated backward subarrays. However, this method
cannot be used in the present problem when we want
to estimate ay,S: as well as 8;. The reason is that the
amplitudes of the elements of A given in (14) are not
all unity, as can be scen from (8). However, if we want
to estimate only the 8,, but not the polarization, this
technique can be used. We consider this case in the
next section.

V. ESTIMATING DIRECTION ONLY FOR
COHERENT SIGNALS

In [5], the authors described a method for using the
array of Fig. 1 to estimate signal directions only, but to
do 50 in such a way that the cstimator works properly
regardiess of signal polarization. This approach treated
the x axis dipoles and the y axis dipoles as separate
subarrays. The arithmetic average of the covariance
matrices for the x and y axis dipoles was used as the
total covariance matrix in the ESPRIT algorithm.

We now show that, with coherent signals, this same
approach can be used in combination with both the FO
[7, 8] and forward/backward [9, 10] spatial smoothing
techniques.

Let x(¢) denote the column vector received from
the x axs dipoles, ic.,

x(t) = [01() x2() O @
x(¢) is the subvector of z(t) consisting of the

1 & odd-numbered clements of z(r). The variables x(f) can
R ==Y e R@ ) (26) be written _
Lo x(¢) = AL & ,5(¢) + 0,(¢) 32
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where Ay, is defined as in (30) with Lo replaced by L,,
@, is defined as
e, = diﬂl{"coﬂh-wﬂz,----—mﬂx) (33)

and n,(?) is a zero-mean complex Gaussian process
with covariance 01 The matrix A,, is the direction
matrix for this approach. The angles of arrival are
assumed to be distinct, so that the columns of

A, define a K-dimensional signal subspace in an
L,-dimensional space. The covariance matrix of x(t)
is

R, = E{x(0)x"(1)}
=AL®,R3AL +0. (34)

Similarly, let y(r) denote the column vector
received from the y axis dipoles, ie.,

y@) =) y2r) yL@)F (35)

where y(¢) is the subvector of z(t) consisting of the
even-numbered elements of z(r). The variables y(¢) can
be written

Y) =AL®,s(1) +n,(t) (36)
where
®, = diag{ — sinv, cos /™, —siny;cosz¢/™, ...,
—sinyx cosfxe/™%} (37

and n,(?) is a zero-mean complex Gaussian process
with covariance 1. The covariance matrix of y(f) is

R, = E{y()y" (1)}

=2,%,R 3K, +01 (38)
Consider R, the average of R, and Ry,
R=jR+R,). (39)
R can be written
R=Ry+oi ' (40)
where
Ry=A.,RA; (41)
with R, defined as

R, = }(3,R,3" + & R, 8} @)
R, ©
e[ o letien @
As long as the incident signals are at most partially

correlated, R, is nonsingular. Since by assumption
none of the incident signals produces zero output

the column vectors in Ay, . For this case, the ESPRIT
algorithm can be applied to R for direction estimation.
For coherent signals, however, (43) becomes
R, = ;l’x' | .yl“.x‘ ! .r‘]H (4)

in which case the rank of R, is at most 2. Thus the
coherent signals must first be “decorrelated” before
the ESPRIT algorithm can be applied.

The first method of decorrelating the signals is the
FO spatial smoothing technique of [7, 8). We apply this
method to the averaged covariance matrix R in (39).

In the curves below, we call this composite method the
alternative forward-only (AFO) method.

In this method, the total array of L elements
is divided into Lo overlapping subarrays with L, =
L — Lo+ 1 clements in cach subarray. Let x,/ (r) denote
the column vector of the x axis dipole signals in the /th
subarray,

@ =[n@) xa@ e, 1),

1<l<Ly  (45)

and let y,! () denote the column vector of the y axis
dipole signals in the /th subarray,

YO =@ ya@) yier. 1O,

1<l<Ly.  (46)

Then let R] be the average of the covariance matrices

of x/ (1) and y/ (v),

K = E O O +¥ O 01} @)

The AFO spatially smoothed covariance matrix R is
the average of R :

Ly
f_1 f
R = ” gii, . 48)
R’ can be written
R =R +0u (49)
h
e K] = ALR/AL (50)

with R denoting the AFO spatially smoothed source
covariance matrix

o1& I-1p (ai-1\HgH
R 2’252[’”* R,(8, )8!
i=]

+&,8 R385

By using (26)~(27), RY can be written

on both the x and y axis dipoles at the same time, R, = 2—1-[§,CCHQ,},' +&,cClal)

[#. | ®,) is of rank K. Thus R, is nonsingular and the Lo

cigenvectors of Ry that correspond to the K largest - -l—C CH (52)
cigenvalues of Ry span the same signal subspace as 2L,
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where (see (28))
Ci =[#.C|2,q)
= [#.GAL, | #,GA[,]
= G[#.K], | #,A,] (53)

The last equality holds because G, @,, and &, are
diagonal matrices.

The minimum number of subarrays Ly required
to make R nonsingular is between K/2 and K
depending on the signal scenario. On the one hand,
suppose all incident signals are linearly polarized so
there is no output on the y axis dipoles. Since by
assumption none of the signals produces zero output
on both the x and y axis dipoles at the same time, the
diagonal elements of &, are then nonzero. For R to
be nonsingular in this case, we must have Ly > K. On
the other hand, assume K is even and suppose K/2
signals produce zero outputs on the x axis dipoles and
the other K /2 signals produce zero outputs on the y
axis dipoles. In this case we must have Ly > K/2 for
R/ to be nonsingular.

The second method for decorrelating the signals
is the forward/backward spatial smoothing technique
of [9, 10}. In the curves below, we label this method,
when used with the averaged covariance matrix R in
(39), the alternative forward/backward (AFB) method.

The AFO spatially smoothed array covariance

matrix R'/® is defined as [9, 10]
Fr=y® ®yn - 9

where R’ is defined in (48), superscript * denotes
complex conjugate, and J is the exchange matrix

0 --- 01
0 10

J= . - (55)
1 00

From (49), we have

IR Y3 =J® +02y) = J®) I +0U. (56)
Then using the relation
ALY =a{""&[ 67
we have from (50)
I® y3=IELKALYS
= XL, ’;(Ll-l)@{)‘ [’;(L'—!)]sz- (58)
Therefore R'/® can be written as

R =R"+ou (59)

where Y —y—,
"o -Al_ﬁ, A, (60)

and R!’* denotes the AFB spatially smoothed source
covariance matrix

R/’ = R+ 87 R®y rCT ()
Furthermore, from (52) we have

R/ = s (CiCH + 47~ eicTe; <01

1 -~ —(Le-
= ilCct + & Poutcfer <)

1
= mczdz' (62)
where we have used JJH = I and defined
C;=[C; | #;% Vcya). (63)

Next, using (53), we have
C;=[G&,AL,|G8,A;, |&; LV
x G*#:A;J | #; VG #;A..J]
=[G&,AL |G3,A,, |G @ ;D
xAr, | G*#,8;“ VAT ) (64)

where we have used (57) with L, replaced by Lo and
L =L, + Ly~ 1. C; may then be written as

C,=G[#,A}, |#,A, |#.6°G~
x #; L V2], | #;6°G18; VAL ]

—T —T cyy T exy T

where H is the diagonal matrix
H=G'G'g;\ Y (66)
= diag{hy, hz,...,hg} (67
with
. ’(L‘l)
h = -'.‘%k—, k=12....K. (68)

For RY’* t0 be nonsingular, the minimum number
of subarrays Ly required is between K/4 and K,
depending on the signal scenario. Each of the
submatrices #,K; , ®,A;,, $:HA;,, and #;HA, , is
a K x Lo matrix. To make C; have rank K, there must
be K independent column vectors somewhere in the
set of these four submatrices. For most combinations
of signals, C; will be full rank if Lo = K/4, i.c., so0
there are K/4 columns in each of the submatrices in
(65). Usually these K /4 columns in each submatrix
will be linearly independent of each other, so C; will

LI & COMPTON: ANGLE AND POLARIZATION ESTIMATION IN A COHERENT SIGNAL ENVIRONMENT m

]




have rank K. However, for certain specific choices

of signal parameters, some of these columns will be
lincarly dependent, in which case Lo will need to be
larger than K /4. Choosing Lg = K, however, is always
sufficient to make C; full rank, because then each of
the four submatrices in (65) has rank K, regardless of

the signal parameters.

V. SIMULATION RESULTS

We now show several examples illustrating the use
of these techniques with coherent signals. The results
below were obtained by using fifty Monte Carlo trials.
The array consisted of L = 10 pairs of crossed dipoles.
All incident signals were assumed to have the same
unit amplitude E,. The signal-to-noise ratio (25NR)
shown in the figures is defined as —10log;o0° dB. A
finite number of data samples N was taken at each
dipole output. The subarray covariance matrices were
estimated from the available dsta samples, as described
in [4] and [S]. The spatially smoothed covariance
matrices were obtained from the subarray covariance
matrix estimates.

We first show an example that illustrates how the
results for spatial smoothing with coherent signals
compare with those using the method in [5] with
partially correlated signals and no spatial smoothing.
We consider an example with 7 coherent signals. The
SNR for each signal is 20 dB and the number of data
samples is N = 200. The number of incident signals
is assumed known in the estimator. The direction
of arrival estimates are computed by using the AFB
technique. Two subarrays (Lo = 2) of 9 clements
(L, = 9) are used. Fig. 4 shows the direction estimates
obtained with each of the 50 independent trials plotted
on a unit circle at those angles from the center of the
circle. The 50 estimates of the angles are superimposed
on the same plot, so the spread in angles can be
seen. Fig. 4(a) shows the results when the signals
arrive from equally spaced angles every 20° between
—55° and 65°. The corresponding ellipticity angles
are also equally spaced between —45° and 45° and
the orientation angles are zero. Fig. 4(b) shows the
results for a smaller separation between signals, every
11.5° between —29.5° and 39.5° and for the same
polarizations. As may be seen, the estimation accuracy
is poor when the signals are spaced every 11.5°. The
reason is that when the angles are closer the direction
matrix A;, is becoming illconditioned. This example
illustrates the resolution limits for this technique as the
7 arrival angles approach one another.

Next, for comparison, Fig. 5 shows the
corresponding resulis when 7 partially correlated
signals are incident and the technique of 5] is
used, ie., there is no spatial smoothing. The other
parameters of the signals are the same as for Fig. 4.

In this case, an array of 9 elements is used, to make
the results comparable to those in Fig. 4. Fig. 5(a)

] 1
[ L
0
03
-}
-3
L]
13
1t
os
o} 1
03
k1S
-13
®

Fig. 4. Direction estimates of 7 coherent signals obtained with
AFB method with L = 10, SNR =20 dB, N = 200, Lo = 2,
orientation angles zero, ellipticity angles equally spaced between
—45° and 45°. (a) Signals arrive from equally spaced angles every
20° between —55° and 65°. (b) Signals arrive from equally spaced
angies every 11.5° between —29.5° and 39.5°.

shows the results when the signals are evenly spaced
from —55° to 65°, and Fig. 5(b) shows them when they
are spaced from —29.5° to 39.5°. Note that the results
in Figs. 4(a) and 5(a) are similar, but with the signals
more closely spaced, the results in Fig. 5(b) are much
better than those in Fig. 4(b).

This example illustrates that the resolution of the
AFB technique for coherent arrivals is poorer than
what can be achieved with partially correlated signals.
This drop in performance occurs because the full rank
spatially smoothed matrix R /* for coherent sources is
different from the full rank source covariance matrix
R, for noncoherent sources. The numerical condition
of R, for noncoherent sources is determined by how
strongly the sources are correlated, but not by the
arrival directions. The numerical condition of R/,
on the other hand, is determined by how closely the
arrival angles are spaced, as can be scen from (62)
and (65). Note that R?/* depends on X, which is
a function of the arrival angles. As the arrival angles
become more closcly-spaced, the columns of Az,
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Fig. 5. Direction estimates of 7 noncoherent signals obtained with
the method in {5) with L = 10, SNR = 20 dB, N = 200, orientation
angles zero, ellipticity angles equally spaced between —45¢ and

45°. (a) Signals arrive from equally spaced angles every 20°
between —55° and 65°. (b) Signals arrive from equally spaced
angles every 11.5° between —29.5° and 39.5°.

become more nearly linearly dependent, and ﬁf /b
becomes more ill conditioned. Moreover, as the o

coherent arrivals become more closely spaced, Rj
in (60) becomes more ill-conditioned because both

Az, and R!’® become ill-conditioned. For partially
correlated signals, the ill-conditioning is less serious
because only Ay in Ry of (17) becomes ill-conditioned.
The more ill-conditioned E.{’ b or Ry, the more
sensitive the matrix is to noise perturbation {13].
(These comments apply to the FO and AFO spatial
smoothing techniques as well)

We next show the error performance of these
spatial smoothing techniques with coherent signals. For
the next three examples, we use N = 31 data samples.

First, we consider a case where three identical
signals arrive from 20°, 25°, and 30°. The
corresponding ellipticity angles are 45°, 40°, and 35°,
respectively, and the orientation angles are zero. For
this case, the signal directions are closely spaced and
the signal polarizations are similar. Fig. 6(a) shows the
direction estimate error variances (in dB with respect

to degrees squared) for the first signal and for the

FO, AFO, and AFB approaches as functions of the
SNR when Lo = 3. Fig. 6(b) shows the variance of the
polarization estimates for the FO approach for the first
signal. These curves were obtained by assuming that
the number of incident signals is known. The variance
of the polarization estimates in Fig. 6(b) is defined as
the mean-squared value of the angular distance { on
the Poincaré sphere between M and ¥, the points
representing the actual and estimated polarizations
(7,1) and (4,1), respectively, as described in [4], where

cos{ = cos2ycos24 + Sm2‘75m27°°5('7 -N
(69)

with ¢ in the range 0 < (< 7.

When the number of incident signals is unknown,
we also used the minimum description length
(MDL) criterion [14, 15) with the spatially smoothed
covariance matrix to estimate the number of incident
signals. Fig. 6(c) shows the probability that the correct
number was obtained as a function of the SNR for
cach of the three methods.

Next, we consider an example where three identical
signals arrive from (25 — A8)°, 25°, and (25 + A6)°,
so Af is the angle separation between two adjacent
angles. The corresponding ellipticity angles are 45°,
40°, and 35°, respectively, and the orientation angles
are zero. The SNR per signal is 20 dB. Fig. 7 shows
the error variances and the probability of estimating
the number of signals correctly for the FO, AFO, and
AFB approaches as a function of A8 when L = 3.

Finally, we consider an example where three
identical signais arrive from 13°, 25°, and 37°. The
corresponding ellipticity angles are 45°, (45 - Aa)®,
and (45 —2Aa)°® and the orientation angles are zero,
s0 Aa is the polarization separation between adjacent
signals. The SNR per signal is again 20 dB. Fig. 8
shows the performance of the FO, AFO, and AFB
approaches as a function of Aa when Lo = 3.

Figs. 6, 7, and 8 show that the AFO approach
yields better performance in estimating both the signal
directions and the number of incident signals than the
FO approach. Note that the signal subspace dimension
in the FO approach is twice as much as the dimension
in the AFO approach, but the number of averaging
subarrays is half as much. Thus these figures show that
better results may be obtained by trading the signal
subspace dimension for a larger number of averaging
subarrays.

From Figs. 6, 7 and 8, we note also that using the
AFB approach yiclds much better performance in
estimating both the signal directions and the number
of incident signals than the FO approaches do. The
rcason for this may be seen by comparing the AFO
and AFB approaches. Using the forward/backward
approach results in two extra submatrices in Cy, as
may be seen by comparing (65) with (53). The extra
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Fig. 6. Performance of FO, AFO, AFB methods versus SNR for 3
identical signals arriving from 20°, 25°, and 30* with L = 10,
N =31, Ly = 3, orientation angles zero, ellipticity angles 45°, 40°,
and 35°, respectively. (a) Variance of direction estimates.
(b) Variance of polarization estimates. (c) Probability of correct
detection.

submatrices reduce the ill-conditioning of ﬁf /* when
the signal directions are closely spaced.

VL. CONCLUSIONS

We have described how a uniform linear array
of crossed dipoles may be used with the ESPRIT
algorithm and spatial smoothing to estimate the
directions and polarizations of arbitrarily polarized
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Fig. 7. Performance of FO, AFO, AFB methods versus A6 for 3
identical signals arriving from (25 - A6)°, 25°, and (25 + A6)*
with L = 10, N = 3], SNR = 20 dB, Lg = 3, orientation angles

zero, ellipticity angies 45°, 40°, and 35°, respectively. (a) Variance
of direction estimates. (b) Variance of polarization estimates.

(c) Probability of correct detection.

coherent signals. We have shown that the FO
spatial smoothing approach may be used to estimate
both signal directions and polarizations. The
forward/backward spatial smoothing approach may
be used to estimate signal directions only. Both
smoothing approaches may be used to estimate the
number of incident signals. Some examples showing
typical results were presented. It is found that spatial
smoothing yields poorer resolution for coherent
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Fig. 8. Performance of FO, AFO, AFB methods versus Aa for 3
identical signals arriving from 13°, 25%, and 37° with L = 10,
N =31, SNR = 20 dB, Ly = 3, orientation angles zerv, ellipticity
angles 45%, (45 - Aa)®, and (45 - 2Aq)®, respectively.
(a) Variance of direction estimates. (b) Variance of polarization
estimates. () Probability of correct detection.

signals than would be obtained with uncorrelated

or partially correlated signals, but of course without
spatial smoothing ESPRIT cannot be used at all with
coherent sources. The results also show that the
forward/backward spatial smoothing approach yields
much better performance in estimating both the signal
directions and the number of incident signals than the

FO approaches do.
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A proof of the Woodward-Lawson sampling method for a finite linear array
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An extension of the continuous aperture Woodward-Lawson sampling theorem has been devel-
oped for a finite linear array of equidistant identical elements with arbitrary excitations. It is shown
that by sampling the array factor at a finite number of specified points in the far field, the exact armay
factor over all space can be efficiently reconstructed in closed form. The specified sample points lie
in real space and hence are measurable provided that the interelement spacing is greater than
approximately one half of a wavelength. This paper provides insight as to why the length parameter
used in the sampling formulas for discrete arrays is larger than the physical span of the lattice points
in contrast with the continuous aperture case where the length parameter is precisely the physical

aperture length.

1. INTRODUCTION

In a pair of classic papers, Woodward and Law-
son [1948] and Woodward [1946], a very popular
technique was developed for synthesizing finite
continuous aperture excitations given a finite num-
ber of (far field) samples. The Woodward-Lawson
technique implements an aperture excitation that is
formed by summing a finite number of uniform
amplitude linear phase distributions. Woodward
and Lawson [1948] hinted at extending this tech-
nigue to linear arrays of discrete elements. Their
expressions for the continuous aperture case con-
tain a parameter which corresponds to the length of
the continuous aperture. This length parameter was
incorrectly assumed to be the physical length of the
discrete array in Balanis [1982], while Stutzman
and Thiele [1981] used the correct length which
extends past the physical array lattice points by one
half of the interelement spacing on both ends of the
array.

In this paper the extension of the Woodward-
Lawson sampling method for finite linear arrays is
formally proven using a technique that highlights
the reasons for the length disparity between the
continuous aperture and the discrete aperture
cases. The far fields of a linear array are determined
exactly by sampling the far field at a minimal
number of predetermined locations. This method
efficiently reconstructs the far field in closed form

Copyright 1993 by the American Geophysical Union.
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without the need to solve simultancous equations.
A practical constraint of this technique is that the
interelement spacing must be greater than or equal
to one half of a wavelength for the sampled field
points to lie in real space (at a real angle 6) if there
are an even number of elements or the interelement
spacing must be greater than a distance slightly
smaller than a half of a wavelength if there are an
odd number of elements. This restriction is signifi-
cant and excludes an empirical application of this
theory to some practical arrays. This practical con-
straint does not imply that any approximations have
been made with regard to the sampling analysis; it is
exact. An exp jw! time dependence is assumed and
suppressed throughout this paper.

2. ANALYTICAL FORMULATION

We are considering a linear array of M + 1
equally spaced elements that reside on the array
lattice shown in Figure 1. It is assumed that the
element pattern of each element is known and that
it is the same for all elements which is equivalent to
the typical assumption that the far fields of the
linear array can be expressed as follows:

exp —jkr
E(r) = EP(8, ¢) AF(8) ———. a
4nr

where E(r) is the electric far field, EP(6, ¢) is the
element pattern, and AF(6) is the array factor which
can be expressed by the well-known relationship
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2 schenti, 1987]. It is noted that C,, is defined in
Unit configuration space, whercas AF(6) is defined in
Cell cos (6) space. This allows Shannon's sampling
T o theorem [Peebles, 1976} to be applied in cos (6)
m=M - X space resulting in the following representation for
AF(0):
m.M-l .........
] (kL cos (0) )
- sin ‘_2—— -nr
. = AF 0,, >
L o Y AFe) "_2_¢ @) kL cos (8) ®
. ——nr
/<_>\ 2
X where
m=1
0. = -1 ni “
—‘-— m=0 a = COS L , )

Fig. 1. Array lattice configuration.

ud M
AF(®)= 3 Cpexp ijf-z(m - ;)Az]

m=0

oM r
= z C., exp | —jk cos (o)(m--;-{)Az]. )

m=0

C ., is the complex amplitude of the mth element, M
is the index corresponding to the M + 1th element,
4 is the unit vector along the array axis, and Az is
the interelement spacing. The objective of this work
is to efficiently determine AF(6) from a finite mini-
mal number of sampled far-field values, AF(6,), in
which 6, is specified.

2.1. Sampling theory development

Equation (2) shows that the array factor is space
limited by z = =(M Az2) and that C,, are Fourier
series coefficients of AF(6) [Bucci and France-

and L is the length parameter of the array which
must be determined. Shannon’s sampling theorem
dictates that the field must be sampled in cos (6)
space at intervals equal to or less than A/(length of
array), which is the Nyquist rate. An exception to
this rule occurs if there are delta function excita-
tions at the endpoints of the interval in the band-
limited domain (configuration space) [Peebles,
1976), which is the case here since the array is
composed of a collection of point sources. The
sampling theorem is obtained by repeating the finite
(physical) band of elements in configuration space
so that the array is periodic (and infinite) (see Figure
2). The far-field pattern in cos @ space is low-pass
filtered to allow only the original spatial bandwidth
(i.e., the physical length L;) to contribute to the
array factor AF(6). The length parameter L dictates
the distance between the repeating finite bands of
elements. If the length parameter equals the physi-
cal length of the array, then the first and last
elements of the adjacent arrays are coincident, and
information is lost. This is the onset of aliasing. The
concept of the unit cell was introduced to define the

kB

L

[ X X R N J o000 0O ese ——

Fig. 2. Example of a five-clement array in configuration space afier the original array has been repeated. The
physical length is given by L,, and the length parameter is given by L.
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length parameter L so that the delta function exci-
tations are no longer at the edges of the band; thus
the Nyquist rate can be used without introducing
alaising problems. Each unit cell is defined to con-
sist of a line segment of length Az which has the
radiating element at its center. The unit cell ensures
that a source-free region surrounds each array ele-
ment which serves to artificially extend the array
endpoints by half a unit cell (or Az/2) beyond the
physical dimensions of the array. In other words, if
the array is considered to be longer on both the top
and the bottom (in this case by Az/2, half the unit
cell), then the radiating elements do not lie on either
of the endpoints of the array, and, consequently,
the Nyquist rate can be applied. L is defined to be
the total distance spanned by all of the unit cells as
shown in Figure 1.

Equation (4) shows that the field is sampled at A/L
intervals in cos (6) space. Geometrically, it is seen
that

L=(M+1)Az &)
or

A M+ 1 A 6

— + -

Az ( )L ©

By examining (2), it is clear that AF () is periodic in
cos (68) space with periodicity A/A z which along with
(6), implies the following recursion relationship:

AF(8, . p+1) = AF(8,) (-DM. Y]

This equation is a consequence of sampling at the
Nyaquist rate and defining the array boundaries to be
extended past its physical boundary by Az/2 on
both ends of the array. Recognizing the identity in
(7, (3) can be expressed as

q+M L

AF@0)= 3 AF(6,) D (-D)™
m=gq ne -
) (kl. cos (8)
s | ———a—
2
kL cos (8)
2

-(m+nM+ l))ﬂ’)

8)
—(m+nM+ 1)

or

AL cos (8)) '
AF(6) = sin (c—:s(-)) > AF(6.)

= (_”ﬂ*l‘l*l‘”‘"

_2_‘“. cos (9)
" -—-2—-(m+n(M+l))1r

)

Equation (9) shows that AF(6) is determined by M
+ 1 complex samples and since the array has M +
1 complex excitations, we can conclude that this
representation of AF(6) uses a minimal number of
samples. This is true because the number of degrees
of freedom in the array, 2(M + 1), equals the
number of independent field quantities sampled.
The integer quantity g in the indices of the first
summation determines the interval of m in which 6,
is sampled. The minimum practical interelement
spacing is dictated by the condition that all the
sampling angles must be real:

[l max A ] max A <
L M+ 1)Az

0)

which is seen by examining (4). Since the value of ¢
is arbitrary, we will choose ¢ such that |m|q,,
remains as small as possible, thereby allowing the
smallest possible interelement spacing Az to be
used. The sampling theorem remains valid for all
interelement spacing and consequently for real and
complex sampled angles. However, from a practical
standpoint, it is not possible to physically measure
a field value at a complex angle. For |m|ny,, to be
minimal a good choice of g is

_—M

= 7 M even,

- M an
q=—i-—; M odd.

with this choice of g, |m|p., is given by

M even,
1 (12)
Imlm = T; M odd.

[l max = —;

2

By substituting the above expression for |m)|m,, into
(10), the lower bound of the interelement spacing
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can be determined under the constraint that the
sampled field points lie in real space:

Az M

—z .

A Cameyy Meven 3
Az 1 a3
—=; M odd.

A2

Equation (9) can be expressed as

kL cos (6)) ‘<
AF(6) = sin (—cgs-l-)) > AF(6,) F(6; m, M; kL),

m=g

14)
where F(6; m, M; kL) is given by

« (_l)m¢l
F(6:m, M; kL) = _2__ kL cos (6)
n _5___(m+,,(u+l))1r
(15)
Letting
1 [kL cos (8) 16
YEMA 2 my 1o

F(6; m, M; kL) can be expressed as

-1 = -n”
FO: m, M kL) = o (2( )). an

M+ 1\ w=nn

Performing the following algebraic manipulation
yields

(-nm
F(8; m, M; kL) = ———
- =D 1 & (-
.("“‘ +=+ 2 ) 18
FO; m, M: kL) =
P M+1
1 < ( l)' 3
(; nz w+nar 2 ) a9
am, n2’,2 (

% - —
n=0

(Cqm7+j3) @ £ =oct

25} (C.-:n,jz) e w1 V] Reconstructed|]
) - Sorvpied Poi

ot - x d Point
20} (C,=4+j0) »

€23+42) »

(C,=24j1) o ]

(co-hj\) .

Arroy Factor Magnitude
s

0 4
5t
=2 n=-3
0 A e " o e
0 30 60 90 120 150 B0

f (Degrees)

Fig.3. Comparison of generated and reconstructed array factor
data.

F(6;,m, M; kL) =
(0; m v

csc (w) (p3))

Where the following identity was used {[Abramowiitz
and Stegun, 1964},

1
csc(z)=;+2z 2

-
m. 22)

The array factor can be expressed in terms of the
sampled values by substituting (21) into (14):

. [kLcos(8)
sin{———] 4w

AF(6) = —— ...2.., AF(0,,)(-1)"csc (w).
@)
or
q+M
AF(0)= > AF(6,,)
m=q
) (Id.cos(o) )
s | ———————
. 2 24)
M+ D i 1 kL cos (8) (
M+Dsin | o\ ™"

which is the Woodward-Lawson sampling theorem
extended to handle the array case. Figure 3 shows a
comparison between the ‘“‘exact” data which is
generated by substituting an interelement spacing of




SOMERS: WOODWARD-LAWSON SAMPLING METHOD FOR A FINITE LINEAR ARRAY 485

Az = 0.6A, M = 6 (which indicates a seven-element
array) and an assumed set of complex element
excitations, C,,. into (2). The reconstructed data
(dashed line) which are a result of substituting the
sampled field points (which are indicated by
crosses) into (24). Note that the two curves overlay
and are indistinguishable.

To deal with the synthesis problem, one can deter-
mine the complex current excitations required to
produce the array factor under the condition that the
array factor is specified at the M + 1 sample angles
6,,n=0,---, M[Stutzman and Thiele, 1982):

M
1
In = > AF(8,) e 2l 29)
M+1 <
or
1 M
In=—— > AF(8,) e Hncosts, (26)
M+1 <

where /,,, and z,, are the current and the position of
the mth element, respectively, and L is the length
parameter defined previously.

2.2. Limiting case: single element (M = 0)

The antenna sampling theorem is valid for an
array of arbitrary size. in this section we shall
confirm its validity by verifying the limiting case of
a single element. If we apply (24) with M = 0 and
use g = 0 as suggested by (11), then the array factor
can be expressed as

AF(0) = AF(8y) 27
where, b;' applying (4),
60 = cos~(0) = w/2. (28)

Equation (27) indicates that the array factor is
isotropic which is what one would expect from a
single element. Note that the sampling angle of #/2
is arbitrary since the orientation (array axis) of the
‘‘array’’ can be considered to be in any direction
and the angle of 772 is referenced to the array axis.

3. CONCLUSION

In this paper the Woodward-Lawson sampling
method has been extended to deal with the case of

the far field of a finite array that has uniformly
spaced identical elements with arbitrary excitation.
Since there exists a Fourier series relationship
between the array element domain and cosine
space, and the array is spatially bounded, Shan-
non's sampling theorem was applied in cosine
space. The length parameter of the array was de-
fined so that the reconstructed array factor pos-
sesses recursive properties and avoids aliasing
problems. The infinite number of sampling points
and the array factor are periodic in cosine space
which permits a simplification by which only a finite
minimal number of sampled points are required to
exactly reproduce the array factor. This proof pro-
vides insight as to why the length parameter of the
array is larger than the physical span of the lattice
points in contrast with the continuous aperture case
in which the length parameter corresponds to the
physical length of the aperture.
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Maximum Likelihood Angle Estimation for Slgna]s
with Known Waveforms

Jian Li, Member, IEEE, and R. T. Compton, Jr., Fellow, IEEE

Abstract—We consider maximum likelibood estimation of the

arrival angles of narrow-band plane waves whes oae or all sig-
mals have kmown waveforms. We preseat computationally ef-
clest and rapidly coaverging algorithms that iteratively maxi-
mize the likelihood functions. We also obtain Cramer-Rso
bounds for these estimators. Finally, we describe the conditions
under which incorporating knowiedge of one or all of the signal
waveforms in the estimators improves the accuracy of the angle
estimates.

I. INTRODUCTION

LGORITHMS are needed for estimating the arrival

angles of signals incident on an array of seasors when
one or all signals have known waveforms but unknown
gains or phases. For example, one such application occurs
in some packet radio systems currently under study (for
example, see [1]-[3]), in which each packet contains a
known pseudonoise (PN) code [4] acquisition preamble.
In these systems, an antenna array is used to estimate the
packet arrival angles and then to separate colliding pack-
ets amriving from different angles. In unslotted packet
radio systems, each packet arrives at the antenna array at
an arbitrary time. For these systems, the preamble is used
to distinguish the newly arrived packet from other packets
that arrive earlier or later. The newly arrived packet is the
signal of interest and is the desired signal. Because of the
acquisition code, the desired packet waveform is known,
but not its exact amplitude or phase. Other packets that
arrive around the same time are considered interfering
signals. In unslotted packet radio systems, the waveforms
of the interfering signals are best modeled as unknown.
In slotted packet radio systems, however, all the incident
signals have known waveforms. This difference is due to
the timing of the packets. In slotted systems, all packets
start at essentially the same time, at the beginning of a
time slot. With the packets aligned in time, the presence

- of the known preambles means that each packet waveform

Manuscript received January 29, 1991; revised October 20, 1992. The ~

mmdnmmmmuuunnvwofﬁumudwm'hfw ’

publication was Prof. S. Unnikrishna Pifiai. This work was
pan by the Joint Services Electronics Program under Contract NWM—”-
J-1007 with the Ohio Sate University Research Foundation

J. Li was with the mofElecumlEnpuem;.OhoSmeUm—
versity, Columbus, OH 43210. She is now with the of Elec-
trical Engineering, University of Florida, Gainesville, FL 32611.

R. T. Compton, Jr., was with the ElectroScience Laborsiory, Depant-
ment of Electrical Engineering, Ohio State Univemity, Columbus, OH
43212. He is now with Research, Iac., Worthington, OH 4308S.

1EEE Log Number 9210126.

is known (except for an unknown amplitude or phase). In
either case, when only the desired signal waveform is
known or when all the signal waveforms are known, these
waveforms may be incorporated into the process of ob-
taining the direction estimates of the packets.

Few existing angle estimation techniques make any use
of the signal waveforms. Recent techniques such as those
due to Bshme {5), Bresler and Macovski [6], Ziskind and
Wax [7], Schmidt [8] and Roy Kailath [9] are examples
of what are called conditional and unconditional angle es-
timators by Stoica and Nehorai [10]. In these estimators,
the incident signals are assumed to be either unknown de-
terministic signals or Gaussian random processes with un-
known correlations. The estimate maximize (EM) algo-
rithm presented by Feder and Weinstein {11] is an
exception. The EM algorithm is a method of splitting the
search for the maximum likelihood (ML) estimate into a
set of parallel searches. The caze of signals with known
waveforms is considered in [11] but is not explored fully.
Miller and Fuhrmann [12] also described a generalized
EM algorithm that is intended primarily for the case of
unknown signal waveforms. They also briefly consider
signals with known waveforms and unknown gains, but
they do not explore this case fully, either.

In this paper, we consider the angle estimation problem
for multiple signals with known waveforms and for a de-
sired signal with known waveform in the presence of in-
terfering signals. We describe computationally efficient
ML algorithms that avoid the need for a multidimensional
search, as is required to maximize the likelihood function
directly when multiple signals are present. For multiple
signals with known waveforms, we present two iterative
algorithms for computing the angle estimates. One ap-
proach is based on the alternating maximization (AM) ap-
proach of Ziskind and Wax [7] and the other is based on
the EM approach of Feder and Weinstein [11]. Our ap-

. proaches differ from the AM approach and the EM algo-

rithm, however, in that we consider a uniform linear array
of sensors and we obtain the angle estimates by finding
polynomial roots rather than by searching over parameter
space. For a signal with known waveform in the presence
of interfering signals, we propose an iterative algorithm
that combines the merits of the iterative quadratic ML
(IQML) approach of Bresler and Macovski {13}, [6} and
the AM approach [7). It transforms the multidimensional
search problem into an iterative one-dimensional search
problem. We compare the performance of these ML es-

1053-587X/93$03.00 © 1993 [EEE
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timators with each other and with that of a suboptimal
estimator that first estimates the angles without using the
signal waveforms or the desired signal waveform (the
1IQML estimator [6]) and then determines which angle es-
timate corresponds to which waveform or extracts the de-
sired signal angle. We also present Cramer-Rao (CR)
bounds for these estimators and compare the performance
of the estimators to their CR bounds.

The paper is organized as follows. In Section I, we
formulate the problem. In Section IIl, we describe angle
estimators for multiple signals with known waveforms and
derive CR bounds for the estimators. In Section IV, we
describe angle estimators for a desired signal with known
waveform in the presence of interfering signals. We also
derive CR bounds for the estimators. In Section V, we
show numerical results and examine the performance of
the estimators. Finally, Section VI contains our conclu-
sions.

II. PROBLEM FORMULATION

Consider a uniform linear array with M isotropic sen-
sors. The distance between two adjacent sensors is as-
sumed to be a half wavelength at the signal frequency.
Suppose K narrow-band plane waves with known wave-
forms impinge on the array from distinct angles 6,, k =
1, - - -, K, relative to the array normal. (By narrow band,
we mean that signals received on different sensors differ
only by a phase factor.) The number of incident signals
K is assumed known. (If the number of signals is un-
known, it may be estimated as described, for example, in
{14].) Suppose that the signal from 6, has form

5:(1) = o pi(t) a

where p, (r) denotes the waveform and «; the gain.

For multiple signals with known waveforms, p, (1),
p2(1), * + + , px(t) are known waveforms that may be cor-
related (or even perfectly correlated) with each other. To
simplify the problem, we shall assume that when two
waveforms p, (1) are perfectly correlated, they are actually
identical. In other words, we exclude from consideration
the case where two p,(r) differ only by a phase factor.
Such a phase difference between two p, () can be incor-
porated into the definitions of the gains a;, so there is no
loss of generality with this assumption.

For a signal with known waveform in the presence of
interfering signals, the signal from 6, is the desired signal
and p, (7) is known. The rest of the signals are interfering
signals and s,(7), * - - , sg(7) are unknown. The desired
signal is assumed to be uncorrelated or almost uncorre-
Iated with the interfering signals, i.e., E{s{ (s, (1)}, &
=2, 3, ---, K, is zero or almost zero, where (-)* de-
notes the complex conjugate. Thus the desired signal
waveform can be used to distinguish it from the interfer-
ing signals. However, the interfering signals may be cor-
related (or even perfectly correlated) with each other.

With X signals incident, the total signal x,, (1) received
at the mth sensor is the sum of the K signals plus an ad-

ditive noise component,
[ 4
X = Z ap@e "= 4 o) @)

where n_ (1) is a zero-mean Gaussian noise process with
variance 0. The n, (1) are independent of each other and
the incident signals.

Let x(1), 5(n), P(1), a, and m (1) be

20 =0 x0) - x®) €))
5 =[50 50 -« s, @)
P(1) = diag { p, (1), p2(0), - -+, px(®)} £}
ax)’ ©)
B = [0@ n) - m@)7 )
where ()7 denotes the transpose. The received signal
vector has the form
x()=A@)s(t) + n(t) = AGP(N)a + &(t) (8)

where A(0) (with 6 = [0, 6, - - - 8,]") is the direction
matrix, whose columns are the direction vectors of the
incident signals

a-[al azcoo

A®) = [a(8) a0)) --- a(b)) )
with :
a@) =1 ¢ - " (10)
and
&, = e an

The array output is sampled at N distinct times 7,, n =
1,2, + - - , N. The random noise vectors n(?,) at different
sample times are assumed independent of each other. The
problem of interest for multiple signals with known wave-
forms is to determine the angles 6,, k = 1,2, --- | K,
from the measurements x(¢,), n = 1, 2, - -+, N. The
problem of interest for a signal with known waveform in
the presence of interfering signals is to determine the de-
sired angle 8,. In the following sections, we describe three
approaches based on ML estimation that may be used to
‘solve these problems.

III. MaxiMuMm LIKELIHOOD ANGLE ESTIMATION FOR
MUuLTIPLE SIGNALS WITH KNOWN WAVEFORMS
We first consider estimators for multiple signals with
known waveforms and derive CR bounds for these esti-
mators.

A. Angle Estimation Algorithms

One way of estimating the signal angles is to start with
the IQML algorithm of Bresier and Macovski {6], a max-
imum likelihood method originally discussed by Kuma-
sesan et al. {13]). This method does not incorporate the
signal waveforms and does not tell us which angle esti-
mate comresponds to which known signal waveform.
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However, we can augment the IQML aigorithm by esti-
mating the received signal waveforms and then correlat-
ing them with the known waveforms to determine which
waveform corresponds to each angle. We consider that
approach in part 1 below.

Then, in part 2, we present two algorithms that do in-
corporate the signal waveforms. Both of these methods
are based on maximum likelihood estimation. The two
methods involve two different iterative procedures for
computing the ML estimates.

1) The IQML Algorithm with Signal Correlation: One
method for estimating the signal angles, which we shall
call Method A, is based on the IQML algorithm [6}, [15].
In this method, the first step is to use the IQML algorithm
to estimate signal angles without taking advantage of the
known signal waveforms. The IQML algorithm itera-
tively computes the maximum likelihood angle estimates
and converges quickly. However, this algorithm, like
many others, may converge to a local extremum instead
of a global one. Yet the first step of the IQML algorithm
is equivalent to a linear prediction approach [16) with the
linear prediction order equal to the number of incident
signals. For sufficiently high signal-to-noise ratio (SNR),
the angle estimates obtained with this first step are suffi-
ciently accurate that the convergence to a global extre-
mum is guaranteed.

After obtaining the angle estimates &,, - - « , 85 from
the IQML algorithm, we next use the known signal wave-
forms to determine which waveform corresponds to which
angle in the set {§,, - - - , 8,}. To do this, we first esti-
mate the waveform of each incident signal and then cor-
relate these waveform estimates with the known wave-
forms. The estimated waveforms of the incident signals
are obtained from 8,, k = 1, 2, - - - , K, as follows [8]:

51 = [A"GHAD) ' A" B)x (1),

n=12--*,N (12)
where (-)” denotes the complex conjugate transpose,
Ad)=1a®) a@) --- a@y) (13)
and

5) =[5, 520 - - Sk (14)

Next, we correlate each waveform in #(7) against all of
the known waveforms p,(r). Let §; ,- be the square of the
magnitude of the cross correlation between each signal
estimate 3,.(¢) and the kth waveform p, (f) normalized with
respect to the averagé power of p, (1),

2

N
R2YH{(STACH
Qe = 5 ,

lgl l Pk (‘u)lz

1skk sK (15

To determine which p, (1) corresponds to a given 8,., for
each §,.(7), we choose the p,(r) for which @, , is maxi-
mum.

The angle estimates obtained in this way are subopti-
mal, because the waveforms are not utilized in forming
the estimates. Nevertheless, this is one method of deter-
mining the arrival angle for each signal waveform.

2) Maximum Likelihood Algorithms that Incorporate
the Known Signal Waveforms: Now we present two ML
algorithms that incorporate the known signal waveforms
in the estimation. When all signal waveforms are known,
maximizing the likelihood function is equivalent to min-
imizing ¢, where [15]

N
= %, I x() - AOPual*lx() = AO PGa).

(16)

The minimization of ¢ is done over 8 if a is known or
over {a, 0} if a is unknown.

To minimize q in (16) directly would involve either 1)
a K-dimensional search if a is known, 2) a 3K-dimen-
sional search if a is unknown and complex, or 3) a
2K-dimensional search if & is unknown and real, or if o,
=ef k=1,2, - ,K, with 8, unknown and real. We
describe below two iterative approaches that may be used
instead to avoid the multidimensional search. These ap-
proaches are based on the altemating maximization (AM)
approach to Ziskind and Wax [7] and the estimate maxi-
mize (EM) approach of Feder and Weinstein [11]).

These two approaches are given in 2) and b) below.
Both methods involve iteration on both  and . To begin
cither algorithm, it is necessary to have initial estimates
for o and 6. The initial estimate for # may be obtained by
using the angle estimates resulting from Method A above
or from other computationally efficient techniques such as
MUSIC, ESPRIT, or others [8], [9], [16]. We let

60 = o 63 --- 60X
be the initial set of angle estimates obtained with one of
these methods. The initial estimate
a® =[al o - Xl
for « is obtained as follows [15]. Of course, if a is known,
we simply set

O = q. : (an

But if  is unknown, a least squares method is used to
determine a‘®. Let

N -]
v = [ Z P"(r.)A”(o‘%A(o“’)P(r.)]

a

N
. [ 2‘ P”(t.)A”(owbx(r.)]. (18)
Then, if a is unknown and complex, we choose
a® = 4. 19

If o is unknown and real, we let

a® = Re (7). (20)
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Of, if a; = ¢’ for each k, with B, unknown and real, we
choose

af = #7 @y
where 80 = (8] B - - - BV is
8° = arg (v). @2

Now we present the two methods that iteratively compute
the maximum likelihood angle estimates.

a) A maximum likelihood method based on aliernating
maximization: The first approach, which we call Method
B.1, is based on the AM algorithm [7). At each iteration,
s minimization is performed first with respect to 6,, then
with respect to o, then with respect to 8,, then with re-
spect to a;, and so forth. At the kth step of the (i + 1)st
iteration, fork = 1,2, - - - , K, we fix

G+l _G+1) G+1) _ G+ o
0y Lap L0y, 0k4y,

af)#lv Sty 0?, a}?.
We compute 8§ ™" by fixing af’ and compute af *" by
ﬁxjnF 05*". The 6{*" and ai*" are updated from
x{*Y(,) whose mth element is
k-1
B = I el Vpy (et rinelt?

K

o alh)

- X alpe@)ehn -t
k'=mke)

by solving for the zeros of a polynomial of order 2(M —
1). The updating procedure is described in the Appendix.
Method B.1 consists of the following steps:

1) Initialize: Let i = 0 and obtain 6'® using the IQML
algorithm (or some other algorithm).
2) Compute a? from (17), (19), (20), or (21).

Y Fork=1,2,""" K, obainf} " "andaf*" from.

(M)
4) Check convergence: If

max 0" — 6} < ¢,
k

let § = 8%; otherwise, leti = i + 1 and go to (3). (¢, is
a suitable convergence constant. § is the final estimate of
6.)

This method is bound to converge to at least a local
minimum of ¢ [7]. Since q is minimized at every step, the
value of ¢ will never increase. However, it is possible that
the algorithm may converge to a local minimum instead
of the global minimum. Nevertheless, in the examples we
have tried, it has always converged to the proper result in
a small number of iterations. This result occurs because
the initial angle estimates obtained with the IQML algo-
rithm have been sufficiently accurate that the global con-
vergence has been guaranteed.

b) A maximum likelihood method based on the esti-
mate maximize algorithm: The second approach, Method

2853

B.2, is based on the EM algorithm [11) and works as fol-
lows. At each iteration, the observed signals x (1) are de-
composed into their signal components plus noise [11]),
and the angle estimates are updated individually from
these separatc components.

As the first step in the (i + 1)st iteration, we decom-
pose the observed signals into their signal components
plus noise. The purpose of this decomposition is to de-
couple the complicated multidimensional minimization of
q in (16) into K separate minimizations. For k = 1, 2,
<o K, welet

igol)(‘.) = ‘(0:0)":0’,‘(1;)

1 PP,
+ 2 [x(r.) R IO a:?p..(:,)].

(23)

Note that the first term of the right side of (23) is the kth

signal component and the second term the noise compo-

nent. For the second step of the (i + 1)st iteration, we

calculate af *" and 8 * " from x{* V() by solving for

the zeros of a polynomial of order 2(M — 1). The updat-

ing of af * and 0, * " is described in the Appendix.
Method B.2 consists of the following steps:

1) Initialize: Let i = O and obtain 8 using the IQML
algorithm (or some other algorithm).

2) Compute a'® from (17). (19), (20), or (21).

3) Fork=1,2,--- K, obainal*"and6{*" from
@)

4) Check convergence: If

max |6/ " - 89| < ¢
&

let § = 6; otherwise, leti = i + 1 and go to (3). (e, is
a suitable convergence constant. 8 is the final estimate of
6.)

This method always converges at least to a local mini-
mum of g [11). But as usual there is no guarantee that it
will converge to the global minimum. Nevertheless, in
our examples, it has always converged to the proper result
in a small number of iterations. The reason is again that
the IQML algorithm has provided good initial angle es-
timates.

Methods B.1 and B.2 both minimize ¢ in (16) itera-
tively. Witihin each iteration, however, Method B.2 com-
putes af * Vand 6 * ” in paralle]l while Method B.1 com-
putes them serially.

B. Cramer-Rao Bounds

Using the results in [17], we may obtain the Cramer-
Rao bounds (CRB’s) of any unbiased estimator of 8 for
both cases of known and unknown signal waveforms.

1) Unknown Signal Waveforms: If all signal wave-
forms are unknown, it has been shown in [17] that the
mean-square error (MSE) of any unbiased estimate of ¢
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= [0, 0, - 0,]"is bounded below by the CRB,

2 N -1
CRB(§)= 1’2- {‘{,l Re[s?¢)D%9) rm,,n(o)sa.)l}

(24)
where
Pog=U-AOAYO)AG)'A"©@) (25)
S(t) = diag {s, (%), 52(2), * * - , sx(t)} (26)
D@®) = [d(©®,) d@®,) - dy)] (vi))
with

d@) = [0 —jxcos B, - -+
-j(M = Dxcos @)o¥~"1T.  (28)

2) Known Signal Waveforms: We present below the
CRB’s for the four cases of known a, unknown real a,
unknown complex a, and oy = e/, k = 1, 2, » K,
with 8, unknown and real. These CRB’s have been ob—
tained by modifying the resuits in [17] under the assump-
tion that the signal waveforms are known. The Fisher in-
formation matrix for the general case where « is unknown
and complex may be found first. By deleting the col-
umn(s) and row(s) of this Fisher information matrix cor-
responding to the amplitude or phase of a, the Fisher in-
formation matrices for other assumptions of a may be
found. Detailed derivations of the results below may be
found in {15].

For a known, it can be shown that the MSE of any
unbiased estimate of 8 is bounded below by the CRB

02
CRB(f) = 5 {r}"! 9 .

where
N
I'=Re [ 2| S"(t..)D”(O)D(O)S(t.)]- (30)
For a unknown and complex, the MSE of any unbiased
estimate of 6 is bounded below by the CRB
a? Tao-! -1
CRB(9) = ) {f — Re(A"AT'A)} @a3n

where

N
A= 3;.‘ S¥ ) A" @) D) S (1) (32)

N
A= .)_31 S A" O)AB) S (). (33)

For o unknown and real, the MSE of any unbiased es-
timate of 0 is bounded below by the CRB

2
CRB(®) = - {T - Re(&) Re(A)] 'Re(A)} ™", (34)

Fora, = e k= 1,2, -+, K, with 8, unknown
and real, the MSE of any unbiased estimate of 0 is
bounded below by the CRB

2
CRB(®) = 5 {F - Im(4) Re ()] 'Im(@A)} . (35)

Comparing the bounds in (24), (29), (31), (34), and
(35), we note that the ratio between any two of the bounds
is independent of the variance of the additive noise or the
signal-to-noise ratio (SNR). Also, the bounds in (29),
(31), (34), and (35) will not change as long as S(¢) or s, (r)
= ay p,(f) is fixed no matter how we define a, and p, (7).
When S(r) is ﬁxed the SNR of each incident signal s, (s)
is fixed.

It can be shown easily that the bounds in (24) and (31)
are the same when the number of samples is N = 1, as
one would expect. (For N = ], not knowing the value of

. complex a is the same as not knowing the only data sam-

ple of the signals.)
For N > 1 and uncorrelated signals, i.e.,

N
Z st tsp() =0

kl,k2=l,2,"',K.k|$kz (36)

we can show that the CRB (8) is a diagonal matrix when
the signal waveforms are known. For o known and a un-
known and real,

30?
NM - DMM - 1)x*

CRB() =
. dia l e s e l
BlP, cosi0," ' Pgcos b
37

where P, is the average power of the kth incident signal,
ie.,

1 N
Po= 5 2 s @38)

For  unknown and complex and a; = ¢/, k = 1, 2,

, K, with 8, unkn~wn and real,
602
CRBO) = oM™ = DMx®
. dia. { 1 1
Bl P cosi 6,  'Preos b}
39

Note that for this case of uncorrelated known waveforms,
the CR bound of an angle estimate is independent of the
presence of all other incident signals, no matter how
closely spaced these other signals are. Note also that the
CR bounds for the cases of known and unknown phases
of the incident signals s,(r) differ by a factor 2(2M -
1)/(M + 1), as seen from (37) and (39). For large M,

L
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2(2M - 1) /(M + 1) is about 6 dB. This 6 dB improve-
ment when a is known or unknown real is consistent with
the CR bounds obtained for the frequency estimate of &
single sinusoid in Gaussian noise derived in [18). This
improvement occurs because signal arrival angles depend
on the phase differences of the signals received at different
sensors and knowing the phases of the signa! waveforms
helps improve the angle estimates. Note also that the kth
diagonal element of the right side of (39) is the same as
the CR bound for the case of a single signal with unknown
waveform arriving from @, [17). This result shows that for
the case of a single incident signal, the CR bounds are the
same for the case of unknown waveform and for the case
of known waveform with o unknown and complex or a
= ¢/%, with 8 unknown and real. Finally, we note that as
for the case of unknown signal waveforms, the CR bounds
for all of the known waveform cases are inversely pro-
portional to the number of data samples N.

For coherent signals, we can show that the CR bounds
are also inversely proportional to N. For this case, the CR
bounds go to infinity as the angle separation between two
signals goes to zero. It can also be shown that the CR
bound for the case of known coherent signal waveforms
with o unknown and complex is the same as the CR-bound

for unknown coherent signal waveforms, i.e., (31) and )

(24) are the same for coherent signals.

IV. MaxiMuM LIKELIHOOD ANGLE ESTIMATION FOR A
Si1GNAL WITH KNOWN WAVEFORM IN THE PRESENCE
OF INTERFERING SIGNALS

We next consider estimators for a desired signal with
known waveform in the presence of interfering signals and
derive CR bounds for these estimators.

A. Angle Estimation Algorithms

The desired angle estimate may be obtained by aug-
menting the IQML algorithm and by using the known de-
sired signal waveform to determine which angle corre-
sponds to the desired signal. The angle estimate may also
be obtained by a maximum likelihood estimator that prop-
erly incorporates the known desired signal waveform in
the estimation process.

1) The IQML Algorithm with Signal Correlation: The
approach we consider below is similar to Method A and
is called Method C. In this approach, we first obtain the
angle estimates §,, - - - , 8y from the IQML algorithm
and compute §,(1), k = 1, 2, - -+, K, as in Section
HI-A1l. Next let §, be the square of the magnitude of the
cross correlation between each $; (7) and the desired signal
waveform p, (f) normalized by the power of $, ()

N 2
Z pieh (r.)l

G- N ’

z "l (’n)lz

k=1,2,+---,K. (40)

] where 0, = [02 03

Since the desired signal is assumed uncorrelated or almost
uncorrelated with the interfering signals, the estimate of
the desired signal angle, 9, is the element in the set {§,,
8,, - -+, 8x ) that corresponds to the maximum {4,, &>,
-+« ,4r}. (The rest of the angles in the set {§,,8,, - - - ,
8¢ ) are the interfering signal angles.)

2) A Maximum Likelihood Algorithm that Incorporates
the Known Waveform: Now we present an ML algorithm
that incorporates the known desired signal waveform from
the beginning. We shall refer to this method as Method
D. It is easy to show that in order to include the known
signal waveform in the estimation process, we should
minimize the quantity [15]

N
1
g =5 .2 5 P ®t) = u{Pre)R} @)

cee QK]T'
xl(‘u) = x(’u) - .(ol)al } 4 (f-) (42)
Pogy=1-A06DIAYOHAG)'A(6) 43)
o v

1 N
Ri6) = 5 2 5)x]' 6. 44)

The algorithm we propose for minimizing ¢ is again an
iterative approach similar to the alternating maximization
approach of Ziskind and Wax [7]. At each iteration, a
minimization is performed first with respect to a; (if a,
is unknown), then with respect to 8, and finally with re-
spect to 6, [15].

As the first step in the (i + 1)st iteration, we fix 0;” and
6. If a, is known, we simply set _

a‘,‘”’ = ay. @s)

However, if a, is unknown, we minimize g with respect
to ai * . By substituting (42) in (41) and setting deriva-
tives with respect to the appropriate variables to zero, it

is easy to show that if a, is unknown and real,

N
a" O Py T pTEIx(1)

af*? = Re

N
a" OV Puiana @) T 1o
(46)

_If @, is unknown and complex,

N
_‘"(9({))?‘1(",”) Z' pl.(tu)x('u)
=1 @

" O Puana®) T |pi e’

ai*? =

and if a; = e#' with 8, unknown and real,
a(|i+|) - f”('““ @8)
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where
N
1" = w [a" 0D Pucepy 5, Preasea).

For the second step in the (i + 1)st iteration, we solve
for 8) * " by fixing | *” and 6. For this step, we min-
in;ize q by applying the IQML algorithm to x§ *"(z,),
where

xf*0@) = x¢t) - a@Dai*"pyt).  (50)

In this case, the initial polynomial for the IQML algo-
rithm is chosen so that its zeros are e™/**%  k = |, 2,
, K.
For the last step of the (i + 1)st iteration, we fix
a{*" and 0Y*" and then find 09*". 8¢* " is the value
of 8, that minimizes

9" "6) = w{Pu.gnRI*VOD}. (S

The required solution for 8¢ * " is obtained with a one-
dimensional search. We limit the search domain to (8} —
v, 87 + v), where y is chosen according to our confi-
dence in 0‘.”.

To summarize, the ML algorithm that utilizes the
known desired signal waveform consists of the following
steps:

1) Initialize: Let i = O and obtain 69 and 67 using the
IQML algorithm, as described in Method A.

2

Re ( [% f(t.)] [ﬁl !"(t.)])

6) Check convergence: if |8Y*" — 0] < ¢;, letd, =
0, otherwise, leti = i + 1 and go 10 (2). (¢, is a suitable
small constant. 8, is the final estimate of 6,.)

This algorithm is again bound to converge to a local
minimum ([7]. However, as usual, there is no guarantee
that it will converge to the global minimum. Neverthe-
less, in the examples we have tried, it always converges
to the proper result in a small number of iterations due to
good initial angle estimates obtained with the IQML al-
gorithm. In general, the number of iterations required
drops as the angle between the desired and the interfering
signals becomes larger. In our simulation examples, fewer
than 10 iterations were needed. The number of iterations
required by the IQML algorithm in Step 4 was fewer than
s.

B. Cramer-Rao Bounds

Using the results in [17], we may obtain Cramer-Rao
bounds (CRB's) for any unbiased estimator of @, for the
case of known desired signal waveform [15].

If a; is known, it can be shown that the MSE of any
unbiased estimate of @ is bounded below by the CRB,

02 N _ -1
CRB(6) = 3 [ Z‘ r(:,.)} (52)
where

T @) = Re[S#(1) D" 0) Pr.yD(0)S(1)]).  (53)

If a; is unknown and complex, the MSE of any un-
biased estimate of 8 is bounded below by

N
CRB(f) = %— Z T -

2) Update af*" from (45) if a, is known, (46) if a,
is unknown and real, (47) if a, is unknown and complex,
or (48) if a; = ¢”*' and B, is unknown and real.

3) Compute x§ * " (1,) using (50).

5‘4")" (Ct;mpute 07 * " by applying the IQML algorithm to
x 1.).
5) Find 6! * " that minimizes ¢“*"(9,) in (51).

Re [é f(t.)] Re” [é ! (r.)]

N
_g n(t)

where
F@) = SH@)D () Pyiya(0)5,(1)  (55)

and

100) = |5, )2 a” (6,) Py.g,ya(8)). (56)
If a; is unknown and real, the MSE of any unbiased

estimate of 8 is bounded below by

2| X
cnn(o)-"; ZTe) -

N £7))
Z 16




Finally, if @, = ¢ with 8, unknown and real, the MSE of any unbiased estimate of # is bounded below by

N
CRB(9) = 12- _§] Fa,) -

Comparing the bounds in (24), (52), (57), (54), and
(58), we note again that the ratio between any two of the
bounds is independent of the variance of the additive noise
or the signal-to-noise ratio. Also, the bounds in (52), (57),
(54), and (58) are independent of a, as long as s, (¢) is
fixed 50 that the SNR of the desired signal is fixed.

It again can be shown that the bounds in (24) and (54)
are the same when N = |, as one would expect. For N >
1, we can show that the CR bounds for all cases of the
known desired waveform are inversely proportional to the
pumber of data samples N.

Also, by using Piyp). = Pyp + Py3 — 1, where Ay =
P,: A,, it can be shown from (54) and (24) that the CR
bounds for the desired angle estimate are the same for the
cases of known and unknown desired signal waveform
when «, is unknown and complex.

Finally, it can be shown from (52) and (58) that for the
cases of a single interfering signal with a; known or with
a, = ¢® but 8, unknown and real, the CR bounds for
the desired angle estimate will remain finite even as the
direction of the interfering signal approaches that of the
desired signal. However, as the directions of two or more
interfering signals approach the direction of the desired
signal, the CR bounds for the desired angle estimate will
go to infinity for all assumptions of ;.

V. TyricaL RESULTS

In this section, we show typical performance changes
that result when all known signal waveforms or the known
desired signal waveform are incorporated. The examples
illustrate the conditions under which incorporating know]-
edge of the known signal waveforms in the ML estimator
can improve the accuracy of the angle estimates or the
desired angle estimates. For the curves below, each in-
cident signal is a BPSK (binary phase-shift keyed) signal
modulated by one period of a 31-b pseudonoise (PN) se-
quence [4]). The incident signals s, (1), & = 1, 2, have unit
power at each sensor and are sampled at a rate of one
sample per bit. For the case of unknown complex o, we
assumed o = [2¢/*/4 2¢7/*/%)7. For the case of un-
known real a, we assumed a = [2 2]. For the case of
a, = e’ with unknown real 8,, we assumed 8 =
(x/4 —=/3)". Note that the gains o are set at the given
values for the simulations and the waveforms p,(7)
changed accordingly, and the incident signals s, (1) are as-
sumed the same for different values of . The SNR at each

_ sensor output, defined as —10 log,, o2 dB, is assumed to
be 20 dB. The number of data samples is assumed N =

nsy
PR TN

31 and the number of sensors is assumed M = 10. Thus
the Rayleigh angle resolution limit for the array is 2 /(M
= 1) rad or 12.73°.

We first consider the case of multiple signals with
known waveforms. For the curves below, it is assumed
that two signals arrive from 6, = 30° and 6, = (30 —
A0)°, so0 Af is the angle separation between the signals.
For the first series of curves, the two known signal wave-
forms are from two different PN sequences with low cross-
correlation. Thus the incident signals are almost uncor-
related (or noncoherent). Fig. 1 shows the CR bounds for
the root-mean-square errors (RMSE's) of 8,, i.e., the
square root of the MSE’s of 8,, as a function of Af. (The
curves for the other angle estimates are similar.) Fig. 1
shows that incorporating the known signal waveforms
significantly improves the CR bounds for 8,, especially
for small Af. For this case of known waveforms, the CR
bounds for 8, depend little on A9, as discussed in Section
II-B. Fig. 1(a) shows that for large A8, where the inci-
dent signals have little effect on each other, the improve-
ment due to incorporating the known signal waveforms is
about 6 dB when o is known or unknown and real. How-
ever, Fig. 1(b) shows that little improvement is obtained
for large A0 when a is unknown and complex or when a,
= ¢# k = ], 2, with the §, unknown and real. These
results are again consistent with the discussion in Section
1I-B.

Fig. 1 also shows the performance results, i.e., the
RMSE’s, for Methods A, B.1, and B.2 obtained by using
50 Monte Carlo simulations with independent trials. The
zonvergence constants used in the iterative algorithms
were chosen to be ¢; = ¢; = 0.005°. We note that the
ML estimates from Methods B.1 and B.2 are very close
to the best unbiased estimates one can get. (Because of
the limited number of Monte Carlo simulations, the RMSE
curves may occasionally fall below the CRB's.) Note also
that comparing the performance of Method A with that of
Methods B.1 and B.2 is similar to comparing the CR
bounds for 8,.

Fig. 2 shows the average number of iterations needed
to obtain convergence in Methods B.1 and B.2. Note that
Method B.1 requires fewer iterations than Method B.2
when a is known or unknown and real. For small A6 and
a known or unknown and real, Method B.2 is not as at-
tractive as Method B.1 since the sumber of iterations re-
quired by Method B.1 is less than half as much as re-

quired by Method B.2. On the other hand, Method B.2
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Fig. 1. Root-mean-square errors and the corresponding CR bounds of §,
versus A0 for multiple noncoherent signals with known waveforms. Solid
curve: known signal waveforms; dashed curve: unknown signal wave-
forms. Symbol 0: Method A; symbol x: Method B.1; symbol +: Method
B.2. For known signal waveforms, we assume (2) a known or a unknowa
real, and (b) a unknown complex or a, = ¢4, & = |, 2, with 8, unknowa
real.

requires fewer iterations than Method B.1 when a is un-
known and complex or when a; = e/, k = 1, 2, with 8,
unknown and real, especially for small Af8. For the latter
two types of a, Method B.2 is more attractive since it can
be used to compute angle estimates in parallel during each
iteration. :

For the second series of curves, the two known signal
waveforms are from two identical PN sequences, so0 the
incident signals are coherent (perfectly correlated). Ex-
cept for the signal coherence, all parameters used below
are the same as above. The case of a unknown and com-
plex will not be shown below since as shown in Section
HI-B thet for this case, the CR bounds are the same for
known and unknown waveforms.

Fig. 3 shows that the CR bounds for the RMSE's of
3, for coherent signals with known waveforms are func-
tions of A9. This result occurs because since the known
waveforms are identical for this case, they cannot be used
to distinguish the incident signals. Figs. 3(a) and (b) show
again that for large A8, where the incident signals have

Aversge Number of lerstiess
w “

2 \VA- e
] ]
;3 B C M |- b ] - Sa—
Aangls Separstion (dugress)
(»)
9 J
[
7 4
i E
} |
! L
L § (/I | 1 }  BEEEE  SE ©)
Angls Ssparstioa (dsgrem)
®)

Fig. 2. The aumber of iterations versus Af for multiple noncoberent sig-
nals with known waveforms. Solid curve with symbol x: Method B.1;
solid curve with symbol +: Method B.2. For Methods B.1 and B.2, we
sssume (8) a known or a uaknown real, aad (b) @ unknown complex or a,
=g/ k= |, 2, with 8, unksown real.

little effect on each other, the improvement due to incor-
porating the known signal waveforms is about 6 dB when
a is known or unknown and real. However, Fig. 3(c)
shows that little improvement is obtained for large A#
when a; = %, k = 1, 2, with the 8, unknown and real.
Fig. 3 also shows that for small A8, the lowest CR bound
is achieved when «a is known. Fig. 3(b) and (c) show that
for small A# with coherent known waveforms, the CR
bound for a; = e’ with §; unknown and real may be
lower than the one for « unknown and real. This result
shows that the knowledge of the amplitudes of the inci-
dent signals s, (f) may be used to better distinguish closely
spaced coherent incident signals. Fig. 3 also shows the
performance results for Methods A, B.1, and B.2. Note
that the ML estimates from Methods B.1 and B.2 are very
close to the best unbiased estimates one can get. Our sim-
ulations show that the average number of iterations needed

for both Methods B.1 and B.2 and for all cases of a is no

more than 6. Our simulations also show that the average
number of iterations required by Methods B.1 or B.2 is
almost the same for the case of coherent signals. For this
case, therefore, Method B.2 is more attractive since it can
be used to compute angle estimates in parallel during each
iteration.

We next consider the case of a signal with known wave-
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form in the presence of interfering signals that are almost
uncorrelated with the desired signal. Since the CR bounds
are the same for unknown desired signal waveform and
for known desired signal waveform with a; unknown and
complex, as discussed in Section IV-B, we will not show
curves for this case of a; unknown and complex. In Fig.
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4, it is assumed that the desired signal arrives from 8, =

30° and the single interfering signal arrives from 6, = (30
-~ Af)*, s0 A0 is the angle separation between the desired
and interfering signals. Fig. 4 shows the RMSE's ob-
tained with Methods C and D and the corresponding CR
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bounds for the desired angle estimate &, as a function of
Af. The convergence constant used in Method D was cho-
sen to be ¢; = 0.005°. Note that the ML estimates ob-
tained from Methods C and D are very close to the best
unbiased estimates one can get. Figs. 4(a) and (c) show
that the CR bounds fot the desired 0, remain finite for a,
known and a, = ¢*' with 8, unknown and real even as
A0 approaches zero, as discussed in Section IV-B. This
result shows that closely spaced desired and interfering
signals can be distinguished by knowing the desired sig-
nal s, (1) or knowing the waveform and amplitude of s, (1).
For small A@, Fig. 4 shows that the smallest CR bound is
achieved when a, is known. Figs. 4(b) and (c) show that
for small A8, the CR bound for o; = ¢ with 8, un-
known and real may be lower than the one for a; unknown
and real. Figs. 4(a) and (b) shows again that for large A9,
where the interfering signal has little effect on the desired
signal, the improvement cue to incorporating the known
desired signal waveform is about 6 dB when «, is known
or unknown and real. Fig. 4(c) shows that lmle improve-
ment is obtained for large A® when a; = ¢#' with the 8,
unknown and real.

We also considered an example where the desired sig-
nal amrives from 6; = 30° and two interfering signals ar-
rive from 6, = (30 — Af8)° and 8; = (30 — 2A8)°, so A8
is the angle separation between the signals. Moreover, the
interfering signals are assumed coherent. Our numerical
results show that when the directions of the two interfer-
ing signals approach the direction of the desired signal,
i.e., A0 approaches zero, the CR bounds for all assump-
tions of a, go to infinity, as discussed in Section IV-B.

VI. CONCLUSIONS

We have presented maximum likelihood algorithms that
incorporate knowledge of multiple known signal wave-
forms with known or unknown gains or a known desired
signal waveform with a known or unknown gain into the
process of estimating the signal angles with uniform lin-
car arrays. These algorithms avoid the complexity of a
multidimensional search. For the case of multiple signals
with known waveforms, we presented two algorithms that
compute the ML estimates iteratively and converge in a
few iterations. For the case of a desired signal in the pres-
ence of interfering signals, we presented an algorithm that
transforms the multidimensional search problems into an
iterative one-dimensional search problem. For compari-
son, we have also used the IQML algorithm augmented
to determine which signal waveform corresponds to which
estimated angle or to extract the desired signal angle.
Curves were presented that compare the performance of
the ML estimators with each other and also with the IQML
algorithms. Both the actual performance and the Cramer-
Rao bounds were shown under several assumptions for
the signal gains or the desired signal gain. These curves
show the conditions under which incorporating the mul-
tiple known signal waveforms or the known desired signal
waveforms in the estimators improves the angle esti-
mates.

APPENDIX

In this Appendix, we consider the case of one incident
signal with known waveform p (¢). For this case, both a
and 8 are scalars. The maximum likelihood (ML) esti-
mates of o (if a is unknown) and @ are found by mini-
mizing the quantity (see (16))

- a@p¢)al”[x(t) ~ a(®)p(t)a).
(59)

1 N
q= ﬁ .g' [x(t)

Dropping all terms not involving a and 8, we get
]
me=)

+ la|*Q (60)
where we have defined
l N
Yo =3 B Tn ()P (52 61)
and
1 Y 2
e=5Z lpel ©2)
A. Unknown 6

The value of 8 that minimizes g is found by setting the
derivative of (60) with respect to 6 to zero. Setting dg /d9
to zero yields

aZ(m-l)y"'

M
- a* Z_JI m=-Dyz® =0 (63)

where
g=e S (64)

To obtain the appropriate solution to (60), we must take
into account the assumed form of a. For the simplest case,
when a is known, we obtain the ML estimate of @ by
finding the zeros of (63) and then using (64).

When o is unknown and complex, setting dg/(d Re
(a)) and dg /(d Im (a)) to zero and solving for the result-
ing a gives

- ~m-1)
@ = o 2 Y2 (65)
Substituting (65) into (63) for & and canceling unneces-
sary terms yields
N M
Z T - mytme™ =0 (69

In this case the ML estimates for § and o are found by
solving for the zeros of (66) and then using (64) and (65)
togetaand 6.




L] AND COMPTON: ML ANGLE SSTIMATION

When a is unknown and real, the « in (63) can be can-
ce.led Thus for this case we have

“
Z m-Dys”" ' - gi m—-1)y.z7" V=0

67
Setting dg /da to zero and solving for the resulting « gives

acke{MlQ 2 Y2 ""'"’}

The zeros of (67) along with (64) and (68) then give the
ML estimates of a and 8.

Finally, when a = ¢’ with 8 unknown aud real, (63)
can be rewritten as

(68)

el” 2 (m - l)y‘ m~t

- 2. m = Dy,27"" V=0, (69)

Setting dg/dB 1o zero and solving for the resulting e/*

gives

z Y2 -m-1

/¥ =22 . 0
* m-l
ngl Im?
The resulting o is therefore
M
a = exp {Jarg[ Zl y...z""""]}. an

Substituting (70) into (69) for e/?® and canceling unnec-
essary terms yields the same equation as (66). From the
zeros of (66), we obtain the ML estimates of « and 8 from
(64) and (71).

B. Known 8

For the case where 0 is known and « is unknown, «
may be estimated from (65), (68), or (71) when « is un-
known and complex, unknown and real, or a = e* with
8 unknown and real, respectively. In these equations, the
2 is computed with (64) by using the known 6.
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EM Diffraction by a Resistive Strip Attached to an
Impedance Wedge

R. G. Rojas and M. Otero

The ElectroScience Laboratory
Department of Electrical Engineering
The Ohio State University
Columbus, OH 43212, USA

Abstract-The high frequency electromagnetic diffraction by a finite length resistive strip
attached to a wedge with equal impedance faces is presented. The problem considered
is two dimensional where the incident field is a plane wave polarized TM or TE to the
axis of the wedge. Since the scatterer has two points of diffraction, the original problem
can be first broken up into two simpler canonical problems which, due to the symme-
try of the scatterer, can be obtained by a proper combination of special cases of the
well known Maliuzhinets impedance wedge solution. A uniform asymptotic solution of
these two canonical problems is developed which is continuous across the various shadow
boundaries. This analysis also takes into account interactions between the two points of
diffraction and points of reflection up to third order where spectral techniques are used to
obtain the fields which are multiply diffracted and reflected as well as transmitted across
the resistive strip. Incorporating these higher order interactions enhances the accuracy
of the solution. Several numerical results are presented including comparisons with an
independent moment method solution.

I INTRODUCTION

For many applications, it is desirable to reduce or modify the electromagnetic
scattering characteristics of a wedge shaped object. If the surface of the scatterer
is conducting, it may be coated with radar absorbing materials to reduce its
scattering. Such thinly coated conducting surfaces can often be approximated in
the analysis by a Leontovich (impedance) boundary condition on the wedge faces.
Although coating the surface will reduce the specular component of the scattered
field, it may have little effect on the field which is diffracted from the wedge tip.
Attaching resistive cards to the edges of scatterers is a well known technique for
reducing scattering and was very successfully applied to reduce the echo width
of a semi-infinite perfect electric conductor (PEC) half plane [1-2]. It seemed
appropriate to extend the use of resistive cards for reducing the scattering from
the wedge tip. Therefore, the configuration chosen in this paper [3] is a wedge
with impedance faces with a resistive card attached to the wedge tip (Fig. 1).
To analyze this configuration, the method used is the Uniform Geometrical
Theory of Diffraction (UTD). This is a high frequency technique which is useful if
the size of the scatterer is on the order of a wavelength or larger, as opposed to a
numerical technique, such as the method of moments, which is primarily useful at
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low frequencies. Compared to numerical techniques, UTD provides better physical
insight into the scattering mechanisms of the object. It also allows us to reduce
the original configuration into a number of simpler configurations. Therefore, the
solution can be obtained by a superposition of solutions to more fundamental,
canonical problems. Keeping in mind that in the high frequency regime, the
scatterer depicted in Fig. 1 has two points of diffraction, i.e., Q1 and Qg, the
two fundamental problems to be solved are the scattering from a semi-infinite
(balf plane) resistive sheet with Q; at its edge, and a semi-infinite resistive sheet
attached to an impedance wedge at Q9. Note, as shown here, the solution for the
former can be obtained from a special case of the latter.

‘P=nn

¢ =-nn
Figure 1. Resistive strip attached to a wedge with impedance faces.

It is worth pointing out that the original goal was to obtain a solution for the
wedge in Fig. 1 with difference impedance values. However, it turns out that
the problem of diffraction by the junction of a resistive half plane and impedance
wedge with different impedance values on its faces yields a second order functional
difference equation for which, to the best knowledge of the present authors, no
solution has been found. Thus, the next logical step was to assume that the faces
of the wedge have equal impedance values. However, due to the symmetry of the
scatterer, it will be shown here that it is not necessary to do a complete analysis of
the mixed boundary value problem for the junction problem. Instead, the solution
for the resistive half plane to impedance wedge (with equal impedances on both
faces) junction can be obtained by an appropnate combination of special cases of
the well known Maliuzhinets solution to a wedge with different impedances [4].
Once the canonical solution to the junction problem has been solved, that solution
can then be used as a building block to construct the solution to the more complex
geometry of Fig. 1. A special case of the resistive half plane to impedance wedge
junction is the planar junction of a resistive half plane to an impedance (equal
impedances on both faces) half plane which corresponds to n = 1 in Fig. 1.
This latter geometry is analyzed by Uzgéren et al. (16] by means of the Wiener-
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Hopf technique which is suitable for planar geometries. It can be shown that the
solution obtained here, which is based on the Maliuzhinets method, reduces to the
simpler case considered in [16]). Furthermore, note that in the geometry depicted
in Fig. 1 the resistive strip is of finite length, whereas, in (16] only a resistive half
plane is considered.

Since there are two points of diffraction, namely @Q; and Q7 in Fig. 1, multiple
diffraction mechanisms between these points will be included in this analysis. This
is handled by a spectrally extended ray technique. Note that in this analysis, the
interaction of the fields that diffract from the resistive edge and the fields reflected
from the wedge faces are also taken into account.

This paper is organized as follows. In Section II, the method of analysis and the
solution for the two canonical geometries, i.e., resistive half plane-wedge junction
and resistive half plane by itself, will be discussed. In Section III, the multiply
diffracted fields will be analyzed by means of a spectrally extended ray technique.
In Section IV, numerical results will be presented and a brief discussion on the
physical interpretation of the results will be given. Finally, in Section V, some
concluding remarks will be given. Throughout this report, it is assumed that the
fields have an e~*! time dependence.

II. METHOD OF ANALYSIS

As pointed out in the previous section, the original problem depicted in Fig. 1
can be solved by first solving two canonical problems. The first fundamental
problem to be solved is the diffraction from a semi-infinite resistive sheet attached
to an impedance wedge for a plane wave incident field (see Fig. 1 with L —
co). This is a two-dimensional scalar problem since the incident field has no z-
dependance and can either be TM; or TE,. Using cylindrical coordinates, the
wedge axis is coincident with the z-axis, the resistive sheet is in the zz-plane,
and the angles ¢ and ¢' are measured positive from the resistive sheet. The
angle between the resistive sheet and the wedge face is nr. Note that —nxr <
¢ < nn, whereas, without loss of generality, it is assumed that 0 < ¢/ < nn.
The wedge faces are impenetrable with a surface impedance Z,, whereas the
resistive sheet is a penetrable surface with a surface resistance R,. For purposes of
analysis, a somewhat more general problem depicted in Fig. 2(a) will be considered
in this section. The scatterer of Fig. 1 can be recovered by letting R. go to
infinity. The analysis of this problem can be further simplified by using an even
and odd mode analysis. The equivalent problems obtained in Fig. 2(b) are derived
taking into account that the resistive boundary condition states that the tangential
electric field is continuous across a resistive sheet; whereas, the discontinuity of
the tangential magnetic field is proportional to the tangential electric field, i.e.,

ax(Et-E)=0
fixixE=—Re x (Bt - H™) )
where the subscripts (+) and (~) denote the top and bottom faces of the resistive

sheet, respectively. Also, #t is a unit vector normal to the surface of the resistive
sheet directed from the (~) side to the (+) side, and E and H are the electric
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and magnetic fields, respectively. Figure 2 shows how the original problem is
decomposed into a superposition of the even excitation and odd excitation cases.
The even excitation case is then equivalent to mounting the resistive sheet over
a PEC ground plane for the TE; case or a perfect magnetic conductor (PMC)
for the TM; case. The odd excitation case is equivalent to the even one except
that the PEC and PMC ground planes are interchanged. The canonical problem
now to be solved is the scattering from a wedge with different impedance faces,
where the solution is valid in the region 0 < ¢, ¢' < nx. The superposition
of the even and odd cases results in a solution to the original problem where

the resulting scattered field is valid everywhere in the region —n7 < ¢ < n=. -

Note that the even and odd mode analysis shows that the second order functional
difference equation alluded to in section I for a wedge with different impedance
faces must reduce, for the configuration shown in Fig. 1, to two uncoupled first
order functional difference equations similar to those obtained by Maliuzhinets {4].

veme) 1,
0 Q

EVEN EXCITATION ODD EXCITATION
st V2 wlemr) 5 U2 v ,
L J
_ . % ;k / + Zc k /
N e’ ne
™, vz dlpme) | Y2 utpmy) |
L} L)
2c % / Zp Zp
T Nne” N

(b)

Figure 2. Even and odd mode analysis. (a) Original configuration. (b)
Equivalent configuration where Z; = 2Rq,2Z, = 0 and Z, =
2R..




E GE BB BN B BB mn N N N I WS N En BN BN IS EE E

Diffraction by a Strip Attached to a Wedge 377

Now the solution to the problem of the scattering from a wedge with impedance
faces Z, and Z,,, where ¢ is measured from wedge face Z, and ranges in values
from ¢ =0 to ¢ = nx at the impedance face Z,,, will be briefly reviewed. The
faces of the wedge satisfy the impedance or Leontovich boundary condition, given
by

T-i3-E)y=14xHz
H-3-M=54xEY ; ¢={° @

where ¢ is the unit vector normal to the impedance faces i (t =a for ¢ =0,

it =w for ¢ = nx), Y; = 1/Z;. As stated above, when the fields have no

2 -dependance, it can be shown that the problem can be reduced to two scalar

problems, namely, TM;,E, # 0,H; =0 and TE,,E; = 0,H; # 0. Thus, let us
define the scalar function U as follows

E;, forTM

v={% frrb’ @)

The technique used to solve the resulting scalar problem is that which was

developed by Maliuzhinets [4]. This method consists of expressing the total field

as a spectrum of plane waves which can be written as an integral over a spectral
function

Ulp,4) = 2% / D(a+ 3~ g, h)eitromaga @)
where p is the distance from the tip of the wedge to the point of observation and
it is assumned that the incident field is given by

U(p, §) = Upe™ 4P cos(¢=¢) (5)
The spectral function U in (4) can be written as follows:
. h) _ ‘I’ (a e, h’ e, h

f](a"’ ’ (nt Y :h’ ) o(a) (6)
o(a) =M )

sin(g) - cos(%')

The function ¥(a, vﬁ‘h, vf,,’") can be written in terms of the well known Mali-
uzhinets function ¢n(a) {4] and is given by

‘I’(a, ,l/w) !l’n( +E+V2’h-—‘;—)¢"(a+ﬂ_yg'h+z)

2 2 2
nw eh T nr eh ¥
n(a- T4t -3 (a-F -l +3) ©
where
No/Zaw for TM;, v=1*
s‘n Vow = { Za w/ﬂo for TE;, yv= V“ (9)

and ), is the free-space intrinsic impedance. The integration path in (4) is along
the twofold Sommerfeld contour 4 shown in Fig. 2 of [6]. This means that the
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scattered field from an interior impedance wedge in the form of a spectral integral
is available for further analysis.

II.A Junction of Impedance Wedge and Resistive Half Plane

The next step is to combine the even and odd solutions as depicted in Fig. 2
to obtain the fields for the wedge-resistive half plane junction Q2 shown in Fig. 1
with L — oo. Keeping in mind that the origin of the coordinate system is Q2
and the angles ¢ and ¢’ are measured from the face of the R, resistive strip,
the total field can be written as follows (—nx < ¢ < nx, 0 < ¢' < nn)

_UM(Q2) i nx eh iro nx e.h
U, 9) = Tt [ 3[0%(a+ T - 1)+ a0 + T - o)

. e~tkpcosag, (10)
where sgn(z) is the sign function defined as follows
—f-1 forz<0

sgn(z) = { 1 forz>0 1)

The spectral functions Uv*(a,v) are given by (Zg = 2R,)

- ¥(a, h’uh
TE;: U%e, ") = W(z',!(‘: :‘; :’)V ()
’ [ R T]

0%, o) = 5005 =~ §)¥nla = F + 18 - §)Unla — 5 — b + §) o(a)
’ Sn( ) alvs — § — #) (1 + § )

™. : U%a,v%)=0%a,v")
0°(a,1?) = Yn(o— B8 + 15 — §) ¥n(a = B — 15 + §)o(a)
’ V(e —§ - ¢)¥n(~vs+ 5 - ¢")

Note that in (12) the expression for U(a,v¢) for the TM; case is obtained from
the previous expression for U%(a, V") for the TE; case with +® replaced by »°.
Although (10) cannot be evaluated in closed form, having this integral in the
form of a spectrum of plane waves is particularly useful for evaluating multiply
diffracted fields as will be seen later. An alternative and more useful representation
of this integral can also be obtained (shown in the next section) by deforming the

original contour 4 into two steepest descent contours.

(12)

I1.B.Asymptotic evaluation of Diffracted Field

The integral in (10) is now evaluated asymptotically by deforming the Som-
merfeld contour as shown in Fig. 4 of [6].

Contributions from integrating along the SDP gives the diffracted field,
Ud(p, ¢), while the residues from encircling the G.O. and S.W. poles give rise
to the G.0. and surface wave fields, UC-0-(p,¢) and US-W-(p, ¢), respectively.
The total field can then be expressed as

U(p,4) = USO(p,4) + USW-(p,¢) + U%p, 9) (13)
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To somewhat simplify the analysis that follows, it is assumed that } <n<lin
the rest of this paper. Note that in most practical applications & <n.
Thus, the G.O. field is given by

for 0<¢<nr:
USO(p,4) = U(p,4) + 5 [F(#,15%) 7 1] Upe™re$+)5(x — ¢ - §)
+T(nx — ¢',05H) Uge™ike cos($+¢'~2n7) 54 4 ¢ [2n - 1]x)
+ %I‘(mr + ¢, 0 Up [T(#', vt F 1] e~ ikpconld=¢'=2n7)

5(¢ - ¢~ 20— 11x) S(=¢ + ¢' + nx) + 3T(nx = 8,15%)
-Ug [I'(2nn - oM F 1] e—ikpcos(¢—¢'+2n¥) S(¢ - ¢' +nx)

Sp4d-po-tn) o (D] (14)

for ~nr<¢<0:
UG'O'(p, ¢) = % [l + r(¢l’ y:.h)] Uoc-l'fpm("“é’)S(' +¢- ¢I)

+ %P(mr +¢',ueh) [1 £ T(¢',ue)) Ugeikpcos(—4—¢'=2n1)
. S("¢ - ¢' - [2" - 1]‘") S(1|’[1 — n] - ¢I)
+ %F(nvr — ¢ eM) [1 £ T(¢', utH)] Uge~ikp cos(—4—#'~2n7)

S +4 - -U0S@ -o-2x) + {Ter} )

TEz

where S(z) is the unit step function defined as follows

_JO0 forz<0
S(z)"{l forz >0 (16)

and I'(¢',v) is the Fresnel reflection coefficient, namely

gin ¢/ — sinv

T(ehv) = v emy

(o))
It is noted that the expressions in (14) and (15) would include additional multiple
reflected terms for values of n less than }

A surface wave pole arises from the singularity in the function ¥(a + & —
&,va,vw) which occurs in the spectral function given in (12). If this pole is
captured by the contour, it corresponds to a surface wave propagating along the
face of the wedge which is given by
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TM; H
USW-(p,9) = T 22)

[r..,w ve) +ogn(9)ro (¢, v5)) e~ ikPem ot s(1g) - ¢5,)
TE:: .
Us.w.(p, ¢) = Umc2(02)

- [rr(d'vh) + sgn(@yran (', )] emitremotus(g) - ¢h) (18)
where v, = yup+iver, o = —tP x4 ¢ —nx, ¢F = nx 4+ %+

sgn(vy )arccos (—hl—,; and r,, is the residue for the corresponding spectral

function given in (12) eva.luated at a = a,, with Z, as the impedance of the
wedge face, namely

h . - nx :

@8t = Im (@-an) 0" (a+ - lelutt)  (19)

To simplify the evaluation of the diffracted field, the two SDP contours shown in
Fig. 4 of [6] are shifted so as to combine them into a single SDP contour in the

w plane where the saddle point is at w = |¢|. The diffracted field can then be
written as

mc .
vip ) =252 [ 2By, ¢) + sen(8)B3(w, )] eite oot
SDP(i¢l)

(20)
where the contour SDP(|4]) is from [¢—1r/2+:co] to [¢+7/2—ioc]. The spectral
functions Bz"’(w, ¢') can be written in terms of the Maliuzhinets functions and
a summation involving cotangent functions (5]

TM; :
! '/’g(j)
Bg(“”¢ ) 8n ‘I’( RE -4, mvteu)‘l’(‘!' -, m"e)
af
33 bt o (298
i=1j=1
Bj(w,¢) = Jim Bi(w,4"
TE;:
B2(“”¢ Vg w) B;(WM Va,w)
Bj(w,¢) = i ..oBg(“’"’ ) (21)
where p .
&= } f: : =2 (22)
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and
Aw, ¢'v Ve, V) = C1(Va, W) = Ca(ve, W) ['in(¢'/") - 'in(“’/n)]
+ 8in(¢' /n) sin(w/n)

o) = (357 e (52) - ()

o () o (152)
2sin (%)

Note that in (21) the expression for B§(w,¢’,v},) for the TE, case is obtained

from the prevxous expression for Bj(w,¢',vf,) for the TM, case with »f,

replaced by v ", The limit in (21) should be taken taking into sccount that

¥n(a) = Ofexp II—',"-(QI} as |[Ima| - oo. The integral given in (20) can now be
evaluated nsymptotxcally using the Van der Waerden method [7]. The function
By(w,¢') is an analytic function except for some real and complex simple poles.
The real poles arise from the cotangent functions which correspond to the G.O.
poles and are located at wj = x— ¢/, wa = —x+ ¢, w3 = —¢' + (2n - 1)x,
wg = —w3 and ws = —¢' — (2n — 1)x. The complex pole which is closest
to the saddle point comes from the function W(5f — w,14,1y) and occurs at
wg = —vy — nx — x. This pole corresponds to a surface wave traveling away from
the edge along the wedge face.

The asymptotic evaluation of (20) yields (I¢] < nx; 0 < ¢' < nx) for large kp

Co(va, ) =

(23)

U, ¢) ~ U“’°(Qz)7- {D(¢,¢ )

z.\/E Z . [‘ F(ikps}) } (24)
where the diffraction coefficient is given by

e
D(6.#) =S (—B;(m, ¢)+ () B304 ¢')) (25)
The residues, r), are determined by

= Jim - ~o1) (5B, + sgn($)3 B30 ) (26)
and
2™/ 5n (ﬁ’-‘;—m) @7
where w; is a pole and F(z) is the well known transition function given by
Fz) = 27" / e dt ; —3x/2 < arg(z) < x/2 (28)
7
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Due to the presence of the square root function /z, a branch cut is introduced
in the z-plane so that F(z) will be a single valued function. Therefore, the
argument of z is restricted to the interval indicated.

11.C Shadow Boundaries for G.O. Fields

For the interior wedge shown in Fig. 3 for which } € n < 1, where one
of its faces can transmit electromagnetic fields, there will be numerous shadow
boundaries due to reflections from and transmission through the wedge faces. The
location of a shadow boundary corresponds to the point at which a G.O. pole is
captured by the contour shown in Fig. 4 of [6]. Note that IS.B. will denote an
incident shadow boundary, R, S.B. a single reflection shadow boundary from face
n, and Ry mS.B. a double reflection shadow boundary from face n to face m.
The resulting location of the shadow boundaries is shown in Fig. 3 for a wedge
angle nx. It is observed that for the shadow boundary Rj, the field is first
reflected by face 2 and transmitted by face 1, while for the R3S.B., the field is
first transmitted by face 1 and then reflected by face 3.

2 8B 1 fon-¢
2 8.8.100%
R 8.5, $=(2a~1in-p

LR '-'-'i'x'&‘f&ifm

-an
Y
[ S e

A Y
RS.5. \\

Figure 3. Shadow boundaries for an interior wedge with face 1 able to
transmit EM fields. Note that —nx < ¢ < nx and 0 < ¢' <
nx.
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I1.D Results for Resistive Sheet to Wedge Junction

Now the bistatic scattering from the PEC wedge, resistive sheet configuration
shown in Fig. 3 with n = 0.75 and p = 2) will be examined. For this case the
incident field is TM;, and the incidence angle is 120°. For this incidence angle,
there are four shadow boundaries and they are located at ¢ = —60°, —-30°, 30°,
and 60°. A plot of the total field, as well as the G.O. and diffracted fields, is
shown in Fig. 4(a). Here it is clearly seen how the diffracted field compensates for
the discontinuities that occur in the G.O. field at the shadow boundaries which
results in a continuous total field.

——
p< 7] -48

[ [ ] 138
¢ Gamacs)

(b)

Figure 4. Bistatic scattering for an incident TM; field for the configura-
tion of Fig. 2 where Ry = 150 ,n = 0.75 and p = 2A. (a)
¢’ =120° (b) ¢' = 30°.
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Next, the same configuration but for an incidence angle of 30° will be ex-
amined. In this case there are three shadow boundaries and the incident field
penetrates the resistive sheet and reflects from the lower wedge face resulting in
a shadow boundary at ¢ = —120° (see Fig. 3(c)). The corresponding field plot
is shown in Fig. 4(b) for the diffracted, G.0O., and total fields. As in the previous
case, the diffracted field compensates the G.O. field at the shadow boundaries
including the one at ¢ = —120°, indicating that the solution is valid in the region
¢<0.

I1.LE Two-part Resistive Half Plane Problem

The second canonical problem to be solved is the diffraction from the point Q;
in Fig. 1 with L — o0, i.e., the half plane problem. However, the more general
problem of scattering from the planar junction at Q) between two semi-infinite
resistive strips as shown in Fig. 2(a) with L — oo (where L is the length of the
resistive strip R4), will be considered first. The solution for the resistive half
plane by itself with its edge at Q), can be obtained by letting the value of R,
go to infinity. This two-part problem was obtained previously by H. C. Ly [8]
and Rojas, et al. [9,10). However, for determining multiple diffraction between a
resistive card junction and the impedance wedge junction, it is more convenient to
have the spectral solution for the resistive card junction in terms of the solution
of the impedance wedge junction. Another reason for considering this problem is
to show that it can also be obtained by a proper combination of the well known
Maliuzhinets wedge solution. To accomplish this, the even and odd mode analysis
shown in Fig. 2 is used. The solution can now be obtained from the superposition
of the even and odd mode solutions for an impedance wedge with an interior
wedge angle of x (n = 1). It is worth noting that since Zj =0 for the TM; odd
case and the TE; even case (see Fig. 2(b)), there is a diffracted field contribution
only for the TM, even case and for the TE; odd case. The other two cases
only contribute G.O. fields. Simplifying the spectral function defined in (21)
with n = 1, the following spectral function for the two-part resistive geometry
of Fig. 2(a) is obtained, where the resistive strip R, is assumed to be infinitely
long,

BrmTE(w, 8}) = B} °(w, ¢})

¢?(7)(sin ve® — sinu® ") sinw sin ¢}

(29)
¥(§- ¢’,u¢ e )W(;—w,vﬁh,vc ) (cosw + cos ¢})

where the origin of the coordinate system is Q) and the angles ¢; and ¢] are
measured from the face of the R, resistive strip. The total field can then be
written as follows

SDP(lé:)

+ U§fre(p1,01) (30)
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The geometrical optics field is given by
Dre(e1,41) = U (o1, 41)5(41) + SU™(Q1)

-{ [T (61, v*) — sgn(é1X] S(x - |61] - ¢1)
+ [T(#1,2*) — sgn($1)¢] S(161] + ¢} — 7))}
. e—Skp cos(j1 |+41) (31)

where p; is the distance from Q) to the point of observation and

= [ =1 TE; case with ¢; <0 1 for TM

é { 1 otherwise ! i (’{_1 for TE, (32)
This spectral function can now be used in conjunction with the spectral function
obtained in (21) to obtain the multiple diffraction coeficients.

. MULTIPLE DIFFRACTION

Once the limit R — oo is taken in (29) and (30), the two single diffraction
coefficients for Q; and Q2 in Fig. 1 are obtained. In addition to these single
diffraction terms, there is also multiple diffraction that can occur between Q; and
Q3. For this analysis, the double and triple diffraction terms which are shown in
Fig. 5 are being considered.

DOUBLE DIFFRACTION TRIPLE DIFFRACTION
AR * /;; /
8 8 Ve
o ..}, ....... z.. Q 0 e 2 Yy QZ
1 Ra 2 1 Re
Zy Ty
(a) (b)

\ o & [ o ) \7
1 \ : ‘/,
Q \‘.‘.S,. ....... et o Ql c:::::::é' 02
1 Ry 2\ Ry \
zy
(c) z,, (d)

Figure 5. Multiple diffraction between wedge tip Q2 and resistive strip
edge Q).
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Since the field which is diffracted from the first diffraction point is in general not
ray optical at the second point of diffraction, the multiple diffraction coeficient
cannot be obtained by successive application of the single diffraction coefficient.
Instead, the spectrally extended ray technique developed by Tiberio and Kouy-
oumjian [11,12,13] is used. In this method, the field which is diffracted from the
first diffraction point is expanded into a spectrum of plane waves and each plane
wave component is multiplied by the diffraction coefficient of the second point of
diffraction. The spectral integral is then evaluated asymptotically which yields
the correct multiple diffraction coefficient.

I11.A Evaluation of Doubly Diffracted Field

The configuration which is used to solve for the doubly diffracted field is shown
in Figs. 5(a),(c). For a field incident on Q) with incidence angle ¢], its scattered
field can be represented by a spectrum of plane waves with complex scattering
angle w. Next, this scattered spectral component is considered to be incident
on Q2 with incidence angle —w and scatters with an angle of ¢. The far-zone
doubly diffracted field can now be written as a spectral integral with the SDP
passing through the origin, namely

dos s SUR(Qy) ™A f(p)
Un(éé) = -—— et

[ Biow ) B8, ) eitEem) s
SDP(0)

(33)
where f(y) = exp (iky)/\/§. The contour SDP(0) is from [~F + ico) to [§ —
ico] and the superscripts “v” and “o” correspond to the TM; and TE, cases,
respectively. The integral given by (33) is now evaluated asymptotically by first
mapping into the u-plane, where u = v2exp(ix/4)sin(w/2) and then using the
modified Pauli-Clemmow method. The resulting doubly diffracted field can be
written as follows

U(4,61) ~ U(Q1) D12(9,¢}) £(p) (L) (34)
where the double diffraction coeflicient is given by

DT} (4,81) = [~ 3(5) wE(5) uf sin(}/2)(1 + cos ;)]
[romtntvat-gy + 5+ ) 0at-d1+ I -2

-1
G+ WG )]

2 M N
. m PL ( )Y vat- .F(iu,u;.)])

Jj=1 m=1 n=1

- Gj(l¢D)
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TE (4 41) = =6v}(§) v8(§) uf sin ¢}
121%:%1 16:kn2¢1(°¢'+§+v‘)¢l(-¢'1+ —Vf)¢¥(§+"3)

V(& — el 2 V")'l’(%- 1v)tan(12/2)

2 M
. z €5 (H (—ufﬂ) Z Yp.(l- f(ikLuf,_)]) G;(leD (35)
j=1 m=1 n=1
where
516D =2 [Catun ) + i (4] ot (22881)

t+qwo

+ A(‘J'¢|$ 0,v., ) ¢3¢2 (

and
N

-1
You = (up, — ud) [ II - -%,)] 37
m=1,m#n

The poles in the u-plane are then tabulated accordingly;
u1 = V2™ 5in([|¢| - %)/2)
ug = V2 sin([(2n - 1)x ~ |¢]]/2)
u3 = V2™ sin([(2n ~ 1)x + |4])/2)
ug = V2" 4 sin([¢) - 7/2)
us = V2e™/sin([-1,]/2)
ug = V2™ sin([(4n — 1)x — |¢])/2)
The indices used in the summation and product terms of (35) are deﬁned in
Table 1 for 8 = |¢| stn,g reciprocity, the doubly diffracted field U21(¢1,¢)
from Q2 to Q, is given in (34) with @y, p and Dj3(4,¢}) replaced by @y, p
and D21(¢19¢ )’ mpedl"ely, where

(38)

Dyy(¢1,4') = D124, 41) (39)
J B M| kn(m=1,M) | N | pa(n=1,N)
1| f<2x(2n-1 1 2 3 2,4,5
11 22x(2n-1 2 2,6 4 2,4,5,6
2| B<2x(1—-n 2 1,3 4 1,3,4,5
2| f22x(1-n 1 1 3 1,4,5
Table 1. Indices used to identify corresponding poles in the u-plane.
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1I1.B Triple Diffraction
Here, the far-zone fields which are triply diffracted from Q) and from Q3 (see

Fig. 5(b),(d)) are determined. The spectral representation for the field diffracted
from Q) is given by

ine
U ) =510 161) [ By 1k~ DT ))
SDP(0)
ﬂLmUd‘ (‘0)

where DgTE(w, ¢,) is the double diffraction coefficient for the field incident on
Q; with xncxdence n.ngle ¢} and diffracted from Q2 with a complex scattering
angle w, and B)"’(|¢1l, —w) is the spectral function for the field incident on Q;
with incidence angle —w and diffracted with angle ¢, (B} for TM; and B}
for TE,). Likewise, one gets the following for the field triply diffracted from Q4

Udia(é,4) = 69— (92) 93 5(1) 1(o) [ B3°061,-) DR B, ¢
SDP(0)
.etkleasw g (41)

The asymptotic evaluation of (40) and (41) are conducted in the same manner
as for the double diffraction case. For the evaluation of the diffraction coefficient
from point Q;, the poles arise from the single diffraction term from Q;, given
by the term B, 7°(141], —w) in (40). The resulting triply diffracted field from Q,

ls
Ut (¢1,61) ~ U™(Q1) D121(1,4}1) £(e1) F(L) (42)

where

DTN (6. 81y = - SV2ETTHRE) V) uf cont(om) a4} /2) ein(l11/2)

8nd(xk)3/2p1(F + ve) W2(BF, vz, 02) v (=ld1] + § + 1)

, (1 + cosg)? AP(4)) AT (i1 )
V1(=lp1] + 3 — v2) b1(—¢, + § + 2) ¥1(~¢) + 5F — 12)

[t e (7)ot (37) + 200 (57)

~2Cs(va, v...)cac2 2%)]

6v2e7/4 $8(%) v8(F) uf cot?(v2/2)
8r3(xk)32 py(—¢) + § +v2) ¥a(—¢, + oF — ) vi(§ + 12)
, sin ¢} sin |¢1] coe?(nx) AD(¢4) AT (1¢1])
Vi(=161] + § +12) va(—lé1] + B — o) VI(BE v

DIE(¢41,4)) =
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Jren () - o0o (2)

—Cy (v}, V) csc? (2:) cot (%)] (43)

The term up is defined in (38). The function AD(¢)) is associated with the
double diffraction term while AT(]4;]) is associated with the triple diffraction
term. These functions are defined as follows;

3
AP(#)) = 3 ¥Pn - FikLul))

n=1

2 2
YD =(ud - uf)

i em]

m=1,m#n

2
AT(a) = Y YT (1 - FkLud))

n=1

m=1,m#n

-1
Yv:ur=(“n ""‘2 II (“n - Um )] (44)

For the function AP (4}), there are three poles in the u-plane which came from
the evaluation of the double diffraction term Djy(w,4}) in (40) and they are
given by

of = VAl - /2
uf = V3 gin([2m — 1]x/2) “3)
o8 = VB gin([ve] 2

For the term AT(|¢y]), the two poles from B}*°(|¢1],—w) are being included,
namely .

= V2" M sin([|¢1 | - 7]/2)

T
1=
of = V3" sn([-sa)/2 “

The evaluation of the field tnply diffracted from junction Qy is slightly more
complicated because the poles arise from the term B,'°(|¢|, —w) in (41), which is
the single diffraction from the wedge-resistive strip junction. This term bas more
poles than the nngle diffraction term from point Q). Thus, the triply diffracted
field U§\2(¢,4') from Q2 is given by (42) with Q1, p1 and Dy (41,4}), re-
placed by Q2, p and Da13(4,¢'), respectively, w
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—6v/3e 4 pi(3) ¢.‘.°(§) u

212 (¢:¢ )= 512”4(,'*)3/5 W(-"!! - w’vc ve ) 'l'( |¢la )
(1 + cos vZ) cot(v5/2) AD T
P+ DV v, "'),2-1 (¢)§e,A Taeh
56,4 = SV G vai(F)uf
DR ¥) = kI TERCE — 78, ) YK — 62 v8) a2 )
1 D T
KGR RS .,uh),z_, i (‘“,Z_le:/\ je) (@7

Again, the term ug is defined in (38). The function AD (¢') is associated with

the double diffraction term while AT(|¢I) is associated thh the triple diffraction
term. These functions are defined as follows

A(B) = (1‘[ (-u5) 2 Y2 -f(akLu;.’,n) Gi(B)

m=1 n=1

-1
Y = (uh —uf %) [ (u,: - ;,:)] (48)
m=1,m#n

where a = D and § = ¢' for the double diffraction term, a =T and 8 = |¢|
for the triple diffraction term, and Gj(B) is defined in (36). The poles for the

double diffraction term A? (¢') are

uf = V2e"* /A sin([¢' - 7]/2)

uf = V2ei/sin([(2n - 1)x - ¢']/2)

uf = V24 in([(2n - 1) + ¢)/2)

uf = _\/ieitﬂ

u‘g = V2" /A sin([~v4]/2)

uf = V2e'/ gin([(4n - 1)x - ¢')/2)
The indices used in the summation and product for the term AP(¢') are defined
in Table 1 for 8 = ¢'. Similarly, the poles for the triple dufmem term AT (14])

(49)
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are
o = V2" qin([|4] - x]/2)
uf = V2e/sin([(2n — 1)x - |¢]}/2)
uf = V2™ /4 sin({(2n - 1)x + |¢])/2) (50)
uf = V2 in([-v4)/2)
u§ = V2™ gin([(4n - 1)x - |4])/2)

The indices used in the summation and product for the term AT(|¢]) are defined
in Table 2.

I |4] M} kp(m=1,M) | N| pa(n=1,N)
1 ¢ < 2% 2n—1; 1 2 2 2,5
1 P2 2x(2n -1 2 2,6 3 2,5,6
2 ¢|<21r 1-n 2 1,3 3 13,5
2 é|22x{1—n 1 1 2 1,5

Table 2. Indices used to identify corresponding poles in the u-plane for
the term AT(|g]).

II1.C Reflection from Wedge Faces

In addition to the multiple diffraction between the resistive half plane edge
Q; and the resistive card-wedge junction Qg, the fields can also reflect from
tbhe wedge faces. The incident ray can first reflect from the wedge face and then
diffract from the resistive half plane edge Q; and vice versa. Figure 6 shows the
various diffraction and reflection mechanisms that were included in this analysis.

The field which is singly diffracted from Q; can then reflect from the wedge
face and vice versa (Fig. 6(a)). The incident field can also reflect from the wedge
face first then diffract from Q then refiect again (Fig. 6(b)). Finally, the field
can doubly diffract from Qg to Q) and then reflect (Fig. 6(c)) and vice versa.
The reflected field is obtained by multiplying the field by the appropriate Fresnel
reflection coefficient when it reflects from the wedge face. The Fresnel reflection
coefficient, I'(¢',v), is defined in (17) where ¢' is the angle between the ray

" and the wedge face and sinv is defined in (9). Reflections from the wedge face

introduce shadow boundaries into the scattered field. The total field at these
shadow boundaries is then compensated for by the appropriate multiple diffraction
term.

IIL.D Double Diffraction Compensation for Shadow Boundary of Single
Diffraction Term

For the configuration shown in Fig. 7, where the faces of the wedge are PECs,
it is assumed that n = .6, Ry = 10002, and L = 1 ). It is of interest to examine
the backscattered case for a TM; field which is singly diffracted from Q; and
reflected from the wedge face as well as the field which is reflected from the wedge
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face and diffracted from Q. This field has a shadow boundary at ¢; = 144°
as shown in Fig. 8. Also shown in Fig. 8 is the field which is doubly diffracted
from Q; to Q2 and from @y to Q). The doubly diffracted field exhibits a
slope discontinuity at the shadow boundary which is due to the G.O. pole w =
—(2n-1)x+|¢| (where ¢ = x—¢)) crossing the saddle point when ¢ = (2n—1)x.
This slope discontinuity in the diffracted field compensates the diffracted-reflected
and the reflected-diffracted fields at the shadow boundary resulting in a total field
which is uniform across the shadow boundary.

(a) SINGLE DIFFRACTION,
SINGLE REFLECTION

(b) DOUBLE REFLECTION,
SINGLE DIFFRACTION

(c) DOUBLE DIFFRACTION,
SINGLE REFLECTION

Figure 8. Diffracted-reflected and reflected-diffracted fields.
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/ a72°

PEC

/ 72°¢

PEC

Figure 7. Backscatter ray paths for singly diffracted field reflecting from
wedge face, reflected field diffraced from edge Q;, and double
diffracted field.

20

SINGIE + DOUBIE DIFFRACTION
~~===--~ DOUBLE DIFFRACTION
SINGLE DIFFRACTION4REYLECTION

)

- / |
-«

-80 —
72 2 112 132 152 172

¢, (DEGREES)

ECHO WIDTE/)A (dB)

Figure 8. TM; backscatter singly and doubly diffracted fields correspond-
ing to the configuration shown in Fig. 7 with R = 1002 and
L=1x
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IILE Triple Diffraction Compensation for Shadow Boundary of Double
Diffraction Term

Considering the same configuration from the previous example, the bistatic case
shown in Fig. 9 will now be examined. Here a field with incidence angle ¢] = 100°
is considered which is doubly diffracted from Q2 to Q; and then reflected from
the wedge face with a shadow boundary at ¢; = 144°. Also included in the
analysis is the field which is incident at ¢} = 100° and triply diffracted from Q.
A plot of both of these components as well as the total field is shown in Fig. 9.
As was the case in the previous example, the slope discontinuity in the triply

diffracted field compensates the doubly diffracted-reflected field at the shadow

boundary.

IILF Surface Wave Fields

As noted in Section II, the faces of the wedge can support surface wave fields,
whereas, the resistive strip cannot because R, is real while Z,, can be complex.
The surface wave fields are excited by the fields incident on the resistive strip-
wedge junction (Q2) and travel along both faces of the wedge. In (18), the surface
wave fields excited by the incident field of (5) are given. However, additional sur-
face waves are excited by the multiple diffracted fields incident at Q3. Therefore,
the total surface wave field is the superposition of all these surface wave compo-
nents. Since the far-zone fields are of interest in this paper, the surfuce wave fields
are not important, except on the faces of the wedge (¢ = £nx) for the lossless
case (Zy, purely imaginary). Thus, they are neglected in the present analysis.

—— DOUBLE + TRIPLE DIFFRACTION
e=e=e=- DOUBLE DIFFRACTION+REFLECTION

-120 - -
1 32 2 112 132 152 172

Figure 8. TM; bistatic doubly diffracted-reflected and triply diffracted
fields with ¢' = 100°, Rs = 1000 and L = 1.
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IV. RESULTS

To verify the solutions developed in the previous sections, a comparison was made
with a moment method solution [15]. Since this moment method solution is for
a resistive card attached to a semi-infinite PEC half plane, only the limiting case
of the present UTD solution for & wedge angle n = 1 can be checked. The
configuration that was used is shown in Fig. 1, for which the incident field is TM,
or TE;, n = 1,2, = 0 and where the backscattered field is being considered.
For the TM, case, Ry = 5000, and for the TE; case, Rs = n3/(4 x 500)Q.
Since the scattered field is a function of sinv of (9), consider the values of sinv
in the three regions of the configuration: free-space (air), resistive card (R,),
and PEC half plane (PEC). For the TM, case, the values for sins* are 0 (air),
70/1000 (Rg), and oo (PEC), while for the TE, case, the values for sin:” are
oo (air), 1o/1000 (Rs), and 0 (PEC). Therefore the TM; and TE; cases are
mirror images of each other. The results are given in Fig. 10, and they show
excellent agreement between the TM; moment method and UTD solutions. As
expected, the TE; UTD solution is a mirror image (with respect to 90°) of the
TM; solution.

ECHO WIDTH/ )\ (dB)

¢, (DEGREES)

Figure 10. TM; (R; = 5009), and TE; (Rg = 70.94Q?) backscatter
echo width for UTD vs. moment method solution for the con-
figuration shown in Fig. 1 with n=1, Zy =0, and L =1).
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An efficient method for numerically computing the Maliuzhinets functions de-
fined in (8) was obtained from the following relation developed by Bernard [14]
in which the function is expressed as a product of Gamma functions over a finite
number of terms with a remainder that can be expressed as an integral

_ N 2 G +4ll+ W") }(-1).
=11 {r (4+ dla/x+ 1+ Pi/n) T (4 + di-a/x + 1+ bi/n)

T (=1)N+1~AN+1)%(1 _ coh(av))
“”(o/ T T o

Since the integral is rapidly convergent due to the exponential term in the in-
tegrand, the upper limit can be truncated at a reasonable finite value allowing
for efficient numerical evaluation of the integral. Three terms were used in the
product of the Gamma functions and the limits of integration were from 0 to 1.
The integration was carried out using an 8-point Gaussian integration routine.

The first case that is considered is the backscattered echo width for a PEC
wedge with a one wavelength long resistive strip. The configuration is shown
in Fig. 1 with a TM; incident field, 2y = 0 -and n = 0.8. The resuits are
shown in Fig. 11 for a case with no resistive strip and then for three different
resistance values. Incorporating the resistive strip to the wedge introduces a
specular component to the scattered field which is indicated by the increased echo
width around ¢; = 90°. For backscattered angles close to endfire, i.e., for ¢; close
to 180°, the effect of the strip is to reduce the echo width of the wedge. The
same configuration is also examined for a TE; incident field (Fig. 12). For this
case, 8 PEC wedge with a one wavelength resistive strip of resistance R, = 10002
is compared to a PEC wedge alone. The resistive card has little effect at endfire
which is expected since the electric field is normal to the resistive gheet at this
point. However, as in the TM; case, there is a strong reflected field at ¢; = 90°.

For the next case, the same geometry as in Figs. 11 and 12 is considered for a
TM, incident field but the resistance value is held constant at R, = 10002 while
the length of the strip is varied (Fig. 13). As expected, increasing the length of
the strip increases the specular component around ¢; = 90° but also decreases
the echo width near endfire.

o
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3 72 108 144 180
¢, (DECREES)

Figure 11. TM, backscatter echo width for the configuration shown in
Fig. 1 with various values of Ry, L=1), Zy =0, and n =
0.8.

23

«30 —
3 72 108 244 180

4, (ecaaxs)

Figure 12. TE; backscatter echo width for the configuration shown in
Fig. 1 with Ry =100, L=1), Zy =0, and n = 0.8.




% 2 208 164 180
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Figure 13. TM; backscatter echo width for the configuration shown in
Fig. 1 with various values of L, Ry = 100, 2, = 0, and
n=08.

Another case to be considered is the effect of adding an impedance surface to
the wedge faces. The incident field is TM,, n = .8, and the surface impedance is
Zy = 37.7-1188.5Q2. The backscattered echo width is shown in Fig. 14. Compared
to the PEC wedge, the impedance wedge has a reduced echo width near endfire
by about 4 dB. Incorporating a one wavelength resistive strip of Rq = 100 to
the impedance wedge further reduces the echo width by approximately 9 dB. A
bistatic TM,; case is shown in Fig. 15(a) where incident field is near endfire at
1 = 179.5°. Incorporating the impedance surface and the resistive strip reduces
the echo width throughout the range of obeervation angles —180° < ¢; < —-36°
and 36° < ¢) < 180°. Note that in the angular region enclosed by the wedge,
ie., —36° < ¢; < 36°, the field is exactly sero as expected. The same case is also
examined for TE; polarization (see Fig. 15(b)). The effect of adding the surface
impedance is to cause the field to vanish along the wedge faces, however, it has
almost no effect in the regions —180° < ¢; < ~36° and 36° < ¢1 < 180°. These
results also show that the addition of a resistive card has almost no effect for
the TE; case. Finally, Fig. 16 shows the TM, backscattered echo width for an
impedance wedge with a resistive card attached to its tip (Fig. 1) for two different
wedge angles. As expected, the backscattered field near ¢; = 180° is decreased
by decreasing the interior wedge angle (increasing n).

y
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Figure 14.

Figure 18.

6 72 108 144 180
4 (CEGaEES)
TM; backscatter echo width for the configuration shown in
Fig. 1 comparing the effect of adding an impedance surface to
the wedge faces and then a resistive strip. Rq = 1009, L =
1\, n=0.8, and 2Z,, = 37.7—i188.5Q.
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(a)
Bistatic echo width for the configuration shown in Fig. 1 com-
paring the effect of adding an impedance surface to the wedge
faces and then a resistive strip where Ry = 10002, L=1), n=
0.8, 2, = 37.7-i188.5Q2, and ¢} = 179.5°, (a) TM;.




400 Rojos end Otero

ECHO WIDTH/) (dB)
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Figure 15. Bistatic echo width for the configuration shown in Fig. 1 com-
paring the effect of adding an impedance surface to the wedge
faces and then a resistive strip where Rg =100, L=1)\, n=
0.8, Z,, = 37.7-i188.5Q, and ¢} = 179.5°(b) TE;,.

0 L L) 20 155 180
#, (DEGXEES)

Figure 16. TM, backscatter echo width for the configuration shown in
Fig. 1 for two wedge angles with Ry = 1002, L = 1), and
Zy = 37.7 - i188.59).
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V. CONCLUSION

A uniform asymptotic solution for the scattering from an impedance wedge (with
equal impedances on both faces) attached to a resistive strip was presented. Using
an even and odd mode analysis allowed the solution of this problem to be obtained
from the solution of the much simpler configuration of an impedance wedge with
different impedance faces. The incident field is a plane wave either TM; or
TE,; and the asymptotic evaluation for the scattered field is valid across the
shadow boundaries. Since there are two points of diffraction, multiple diffraction
between these points up to third order was included in this analysis. Also included
in the av:zlysis were reflections from the wedge faces of the diffracted fields as
well as fields that are first reflected and then diffracted which introduced shadow
boundaries in the scattered field. Careful accounting of the G.0O. poles when
determining the multiple diffraction terms compensated for the presence of these
shadow boundaries.

One of the potential applications for the solutions developed here is that they
can be used as design tools for reducing the echo width of wedge shaped structures.
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